
Exploring the Software Design Patterns Course Based on

the Outcome-Based Education (OBE) Philosophy

Xianshuang Zhao

Guangzhou College of Applied Science and Technology, Zhaoqing, Guangdong, China

Keywords: Software Design Patterns; Outcome-Based Education; Software Development;

Modular Teaching

Abstract: To address practical challenges in teaching "Software Design Patterns"

courses-including complex content, disconnect between theory and practice, and

implementation difficulties-this study explores an OBE (Outcome-Based Education)

approach. Through discovery-based exploration with classroom implementation as the

ultimate goal, we developed implementation-oriented projects that integrate software

design patterns with commercial software development. These projects enable students to

learn the advantages of modular programming through software development, cultivating

design pattern thinking. By adopting OBE principles in teaching "Software Design

Patterns," students gain precise understanding of design patterns' value in commercial

software development, enhancing learning engagement and improving course

effectiveness.

1. Introduction

"Software Design Patterns" is a course offered in the Computer Science and Technology program

at higher education institutions, designed to help students standardize code and structural design in

daily software development [1]. It aims to cultivate students' ability to write standardized code and

conduct systematic architectural design for system frameworks [2]. However, as the course content

leans heavily on theoretical and abstract concepts, many students struggle to comprehend its

complex structural design principles, making it generally challenging for them to grasp.

Guangzhou Institute of Applied Technology has introduced the "Software Design Patterns"

course in its Computer Science and Technology program since 2023, following the computer

science curriculum framework. This outcome-based course adopts an industry-aligned educational

design approach [3], enabling students to better apply theoretical knowledge in real-world software

development environments. The program not only enhances students' understanding of software

design principles but also builds practical foundations for their future careers, effectively bridging

academic learning with industry needs.

2. OBE Philosophy

Outcome-Based Education (OBE), first proposed by Spady et al. in 1981, is an outcome-oriented

pedagogical approach designed to equip students with the ability to apply acquired knowledge

Curriculum and Teaching Methodology (2025)
Clausius Scientific Press, Canada

DOI: 10.23977/curtm.2025.080810
ISSN 2616-2261 Vol. 8 Num. 8

72

effectively in engineering practice [4]. This framework rapidly gained traction as a mainstream

educational reform concept in countries like the UK and France. The American Society for

Engineering Education (ASEE) adopted it as a benchmark for integrating theory with practice. The

OBE philosophy emphasizes combining instructional design with practical teaching to enable

students to flexibly apply knowledge and achieve tangible outcomes. This requires implementing

backward design principles [5] in teaching practices, where outcomes are planned in reverse to

ensure alignment with educational objectives and help students attain desired learning outcomes.

In the design and implementation of educational curricula, classroom instruction remains an

indispensable core teaching framework. It transcends mere one-way knowledge transmission to

create a structured learning environment. Within this framework, educators meticulously curate and

logically organize knowledge systems that form the bedrock of students' professional competencies.

These foundational elements provide essential theoretical support and intellectual preparation for

their future career success. Specifically, well-structured classroom teaching helps students develop

clear disciplinary frameworks. When confronting complex, ever-changing workplace challenges,

this systematic learning creates a cognitive map that prevents "missing the forest for the trees,"

offering reliable analytical foundations for problem-solving. More importantly, only by truly

understanding the core principles and logical underpinnings taught in class can students grasp the

"why" behind each operational step and technical decision during practical applications. This marks

the critical leap from "knowing what" to "understanding why." Such deep comprehension empowers

students to apply theories flexibly, adapt autonomously, and innovate boldly in practice. It also

guides them to verify, reflect upon, and critique learned theories through hands-on experience,

forming a virtuous cycle where theory and practice reinforce each other. Finally, the fundamental

purpose of classroom teaching--that is, the realization of the organic integration and mutual

promotion of theory and practice, so that students can truly achieve the excellent ability to apply

what they have learned and use it to promote learning--is realized naturally in this process.

3. Teaching exploration of "software design patterns"

In the field of instructional design, numerous case studies have successfully implemented the

OBE (Outcome-Based Education) philosophy across various courses, achieving remarkable

teaching outcomes. For instance, Professor Sun Xia has applied OBE principles to language

instruction [6], while Professor Chen Xiangqing has adapted them for the "Market Research

Techniques" course [7]. The author has further applied OBE concepts to teach "Software Design

Patterns" to computer science students.

3.1 Defining the objectives, significance, and final learning outcomes of the "Software Design

Model" course within the professional framework

The Software Design Patterns course in computer education aims to equip students with practical

application skills. By mastering these principles, learners can develop optimal software

architectures during development processes. This foundational knowledge enhances their

effectiveness in software development and maintenance. When entering corporate environments,

students applying these patterns in real-world projects will significantly boost design efficiency

while ensuring smoother software upgrades and future maintenance.

In alignment with the specific objectives and expected outcomes of the software design course,

and adhering to the Outcome-Based Education (OBE) teaching philosophy [8][9], this course has

developed clear and measurable learning outcomes through thorough research and meticulous

planning:

73

3.1.1 Knowledge outcomes

Through course study, students will systematically master several common theoretical patterns in

software design and their core principles. The Decorator pattern emphasizes dynamically extending

functionality without altering the original object structure. By breaking down features into

independent decorator classes and combining them through composition, it effectively avoids the

proliferation of subclasses caused by deep inheritance hierarchies. The Factory pattern introduces

specialized factory classes to encapsulate object creation logic, separating instantiation processes

from business code. This significantly enhances code flexibility, maintainability, and scalability.

The Adapter pattern uses adapter classes as an intermediate layer to convert incompatible interfaces

into client-desired formats, resolving system collaboration issues caused by interface mismatches.

The Singleton pattern ensures a class has only one instance, providing a unified global access entry

point. By limiting instantiation frequency, it prevents resource waste, making it suitable for

scenarios requiring strict control over object quantities. The Publish-Subscribe pattern decouples

message publishers and subscribers, establishing an efficient asynchronous communication

mechanism that improves system responsiveness and module independence. These design patterns

collectively form essential principles and practical tools in object-oriented software architecture.

3.1.2 Competency Outcomes

Through this course, students will develop a systematic understanding of software design

patterns and ultimately acquire the core competence to analyze and flexibly apply them in complex

software design. This ability manifests in three dimensions: First, in software framework design,

students will transcend isolated pattern recognition by integrating them as foundational elements of

holistic architecture. They will demonstrate proficiency in applying creational, structural, and

behavioral patterns to create highly cohesive yet loosely coupled frameworks that ensure optimal

scalability and maintainability. Second, in logical thinking, students will move beyond mechanical

application of theories to deeply analyze the inherent needs and contradictions within business

scenarios. They will pinpoint design pain points in real-world localization and personalization

challenges, evaluate trade-offs, and propose viable solutions-showcasing exceptional analytical and

decision-making capabilities. Finally, in hands-on practice, acquired design patterns will translate

into tangible code productivity. Students will implement design concepts through coding,

developing critical modules and core logic in concrete system architectures to ensure precise

execution of design principles. In summary, this course aims to cultivate software engineers capable

of both strategic top-level design and meticulous problem-solving in practical implementations.

3.2 Design the teaching content of the course based on the learning results

Software design patterns are highly theoretical, involving abstract concepts and principles that

students often struggle to connect directly with real-world applications. To effectively bridge the

gap between theory and practice in classroom instruction, teachers prioritize incorporating concrete

case studies into their teaching. Through these vivid, real-world examples, instructors can transform

abstract theories into tangible concepts, helping students better grasp the core principles of design

patterns. This approach not only sparks students' interest in learning but also enhances their

hands-on skills and problem-solving abilities, making the curriculum more engaging and practical.

By truly integrating theory with practice, this method achieves twice the result with half the effort,

delivering exceptional educational outcomes.

The course instructional design content project table is shown in Table 1. The project design is

based on real-world software design scenarios, integrating application scenarios of various software

74

design patterns to deepen students 'understanding. Project 1's application scenario involves banks

using the Adapter pattern during software upgrades to achieve interface conversion, addressing

compatibility issues between legacy systems or third-party systems. Given the rapid iteration speed

of software features during upgrades, developing new interface functionalities requires significant

manpower, time, and costs. For legacy systems, minor modifications to existing interface data are

needed to maintain stability and functionality. To save development time and costs, the Adapter

pattern is utilized to create middleware that integrates legacy systems with new ones, avoiding

redundant development. New features are progressively added to the new interface to achieve

upgrade objectives. Key learning outcomes include understanding the application scenarios of the

Adapter pattern, hands-on implementation of Adapter code, and enhanced practical skills. Project

2's application scenario involves using the Decorator pattern in coffee order system design to

improve system robustness. For example, coffee's basic components include milk, while sugar and

syrup are decorative additions. During design, milk can be repeatedly decorated with sugar or syrup.

By leveraging the Decorator pattern's characteristics, modular decoration operations are adopted to

enhance code reuse capabilities, improve code reusability, and shorten development cycles.

Table 1: Project Design for the "Software Design Patterns" Course

Project ID project name Knowledge Output Achievements

1 Application of

Adapter pattern in

banking scenarios

The Adapter pattern shares

characteristics with other real-world

application scenarios, serving as a

functional solution.

Master adapter application

scenarios, hands-on skills,

and the ability to apply

knowledge flexibly

2 Decorator pattern in

coffee

Application in the

order system of the

orchid

The Decorator pattern is characterized

by its applicability to real-world

scenarios, serving as a design pattern

that provides a flexible way to add

functionality to existing code.

Master the application

scenarios of decorators for

developers, and develop

hands-on skills to apply

knowledge flexibly.

4. Conclusion

This study explores the teaching of "Software Design Patterns" based on the Outcome-Based

Education (OBE) philosophy. By focusing on the course's ultimate learning objectives, it conducts

backward design and meticulous refinement of instructional knowledge and skill development. The

approach helps students understand how these design patterns can be applied in real-world software

development scenarios, ultimately achieving the desired learning outcomes.

In the OBE-based curriculum model, the practical nature of software development is addressed

through a design approach that integrates real-world scenarios with coding. This methodology

provides students with systematic design processes across multiple application contexts, enhancing

their critical thinking and development capabilities through software design pattern categorization.

The selection and determination of course objectives, teaching methods, and instructional tools are

centered around educational outcomes, aiming to improve students 'comprehensive abilities while

addressing limitations in existing teaching models. This approach ultimately elevates the teaching

quality of the "Software Design Patterns" course and stimulates students' learning engagement.

References

[1] Llanez G C, Vallejo P, Aguilar J. Design patterns applied in the development of serious games for

cognitive-affective training [J]. Science of Computer Programming,2026,248103378.

[2] Nasrabadi Z M, Parsa S, Jafari S. Measuring and improving software testability at the design level [J]. Information

75

and Software Technology,2024,174107511.

[3] ReimanisD, IzurietaC. A study of behavioral decay in design patterns [J]. Journal of Software: Evolution and

Process,2023,36(7).

[4] Poy O, Moraga Á M, García F, et al. Impact on energy consumption of design patterns, code smells and refactoring

techniques: A systematic mapping study [J]. The Journal of Systems & Software,2025,222112303.

[5] Sudha R, A. S C. Evaluation of Quality Attributes of Software Design Patterns Using Association Rules [J].

International Journal of Advanced Intelligence Paradigms,2021,19(1-2).

[6] Sun Xia, Cheng Hongbin. Teaching Reform of C Language Course Based on OBE Model [J]. Journal of Ningbo

Institute of Education, 2016,18(4):16-18.

[7] Chen Xiangqing, Guan Qiuyan, Zheng Peiqiong. Teaching Reform and Practice of 'Market Research Techniques'

Course Based on OBE [J]. Business Economics, 2015(11):150-151.

[8] Sanchez-Gordon S, Sánchez-Gordón M ,Yilmaz M, et al. Integration of accessibility design patterns with the

software implementation process of ISO/IEC 29110[J]. Journal of Software: Evolution and Process,2019,31(1).

[9] Hussain S ,Keung J ,Sohail K M, et al. Automated framework for classification and selection of software design

patterns [J]. Applied Soft Computing Journal,2018,751-820.

76

