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Abstract: The image quality in the underground environment is limited by insufficient 

lighting and the interference of non-uniform dust and mist generated by work activities. 

This non-uniform fog results in low image visibility, blurry details, and color distortion, 

which hinders underground safety monitoring. For this purpose, a model was designed for 

the removal of non-uniform fog underground. Firstly, the module includes multi-scale 

convolution and parallel attention mechanism. Multi scale convolution can obtain more 

feature information from images in order to restore texture information. Parallel attention 

can better capture multi-dimensional global information, improve the comprehensiveness 

of feature extraction, and perform well in removing non-uniform fog. In addition, the SE 

attention module is introduced to automatically learn the sensitivity of different channels 

to fog concentration, with high weights for dense fog areas, enhancing the dehazing effect. 

Finally, the PSNR and SSIM of the Haze4K dataset were verified to be 32.18 and 0.963, 

respectively. The validation indicators for the self-made non-uniform fog dataset are 

PSNR of 32.37dB and SSIM of 0.981. This provides a certain reference value for 

obtaining high-quality images for underground monitoring. 

1. Introduction 

The clarity of images and videos collected underground depends on the shooting equipment and 

collection environment. However, the underground environment is complex, and underground 

mining operations can generate non-uniform dust and mist. This non-uniform dust and mist cause 

severe absorption and scattering effects on light, resulting in loss of image details and contrast, as 

well as severe color distortion in the collected images. This problem leads to a sharp decline in the 

accuracy and robustness of subsequent advanced visual tasks, such as object detection, device state 

recognition, obstacle avoidance, and other algorithms. Therefore, researching non-uniform fog and 

dust image enhancement and restoration techniques for special underground environments has 

crucial theoretical value and practical significance for improving underground safety monitoring 

levels and ensuring production efficiency. 

Most methods based on image restoration use the Atmospheric Scattering Model (ASM) [1] [2], 

which projects images and atmospheric light to achieve dehazing effects on the images. The Dark 
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Channel Prior (DCP) dehazing algorithm proposed by He et al. [3] uses an atmospheric scattering 

model to quickly estimate atmospheric light and transmittance. When the brightness is sufficient, it 

can achieve good restoration results. However, due to the use of the minimum value in the image, 

this method may cause certain color distortion. The underground image dehazing algorithm 

proposed by Wang et al. [4] is based on an adaptive dual channel prior algorithm for dehazing 

underground coal mine images, which can effectively remove dust and haze from the images, 

improve the recognizability of detailed information in the images, and greatly reduce computation 

time. Cao et al. [5] introduced a boundary constrained dehazing algorithm for underground coal 

mine images, which combines the DCP algorithm with boundary constraints and context 

regularization methods to achieve the goal of dehazing underground coal mine images. Overall, 

traditional dehazing methods can still achieve good dehazing effects, but due to their relative 

simplicity, there are certain shortcomings in accuracy. 

Based on deep learning methods, the difference between foggy and non foggy images can be 

directly generated through ASM or learning. Li et al. [6] modified the formula based on ASM, 

combined the transmission map with atmospheric light to form a single parameter, and constructed 

an end-to-end integrated dehazing network (AOD-Net) to achieve fast parameter estimation. 

However, there may be phenomena such as excessive smoothness or insufficient removal in object 

edges or complex texture areas. The underground image dehazing algorithm proposed by Wang et 

al. [7] is based on a haze prior residual perception learning dehazing framework, which has 

significant advantages in ensuring the naturalness of edge structure and color, but the computational 

complexity is relatively high. Cai et al. [8] designed a network from start to finish to estimate the 

haze map transmission map, and then restored the haze free map based on ASM. However, the 

removal effect on outdoor defogging environments is not ideal. The improved downhole fog 

algorithm proposed by Huang et al. [9] can greatly improve processing speed, but its color retention 

ability is poor in strong fog areas. Li et al. [10] proposed a dual branch fusion network for 

enhancing edge feature extraction, which can be effectively applied to real underground dehazing 

tasks. However, its performance under extreme lighting conditions still needs improvement. Qin et 

al. [11] proposed a Feature Fusion Attention Network (FFA-Net) for underground fog, which 

utilizes feature attention mechanism to enhance the expression of Convolutional Neural Network 

(CNN). However, the resulting image often lacks clear details and boundaries. Chen et al. [12] 

proposed the Global Context Aggregation Network (GCA-Net), which introduces smooth 

expansion implementation in the network structure to avoid grid artifacts, and uses gate controlled 

sub networks to fuse multi-scale features together, improving the dehazing effect of underground 

images. Li et al. [13] designed an algorithm that combines global residual attention and gating 

features, which can effectively solve the problem of restoring dense fog areas underground, but has 

poor robustness to motion blur and noise. 

The algorithm in this article utilizes multi-scale convolution to extract image feature information, 

and utilizes parallel global grouping coordinate attention module, Triplet Attention module, and 

enhanced channel pixel attention module to capture the interaction of cross dimensions through 

mixed attention and calculate weights. It has a huge effect on dehazing processing in special 

underground environments. The cross dimensional interaction between the spatial dimension and 

channel dimension of the Triplet Attention module enhances the performance of the dehazing 

network. The global grouping coordinate attention module aims to capture the spatial global 

information of the feature map and generate an attention map to weight the features, thereby 

enhancing their feature expression ability. The introduction of SE module focuses on improving the 

network representation ability, prompting the model to focus more on the dehazing task itself. 
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2. Research design 

2.1 Dehazing network model structure 

The complexity of the underground environment is high, the lighting conditions are weak, and 

the dust and fog in the underground working environment make the obtained images blurry. 

Therefore, a dehazing model was designed. The network structure is based on UNet as the 

backbone, and the multi-scale convolution module can effectively expand the receptive field and 

obtain rich information from underground images. Large convolutional kernels focus on areas with 

significant dense fog, while small convolutional kernels focus on detailed features and restore edge 

texture information. Designing parallel attention can enable the network to focus on detailed feature 

maps.In addition, the SE attention module is introduced to enhance the model's attention to dense 

fog areas, making the model more effective in removing non-uniform fog. The network model is 

shown in Figure 1. 

 

Figure 1 Dehazing network flowchart 

2.2 EPCA module 

This module consists of a multi-scale convolution module and a parallel attention module. Firstly, 

let x be the original feature map and normalize it using BatchNorm, let x̂ = BatchNorm(x) . 

BatchNorm can accelerate network convergence, improve generalization ability, and prevent 

overfitting. As shown in formulas 1-5 below. 

 x1 = PWConv(x̂)  (1) 

 x2 = Conv(x1)  (2) 

 x3 = Concat(DWDConv13(x2))(3) 

 DWDCov9(x2)(4) 

 DWDCov5(x2)) (5) 
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Here, PWConv refers to point wise convolution. Conv refers to a convolution with a kernel size 

of 5. DWDConv13 refers to a 7 × 7 depth dilated convolution with an dilated kernel size of 13 and 

an dilation rate of 2. DWDConv9 refers to a 5 × 5 depth dilated convolution with a kernel size of 9 

and an dilation rate of 2. DWDConv5 represents a deep dilated convolution with a kernel size of 5 

and a dilation rate of 2, which is 3 × 3. Finally, Concat represents the concatenated features in the 

channel dimension. The large convolution kernel focuses on the dense fog areas in the image, while 

the small convolution kernel restores the detailed texture features of the image. As shown in 

formula (6). 

 y = x + PW Conv(GELU(PW Conv(x3))) (6) 

The enhanced parallel convolutional attention module combines different types of attention 

mechanisms. It includes a global grouping coordinate attention, an enhanced pixel attention, and 

triplet attention. Triplet attention does not use any dimensionality reduction operations, but captures 

cross dimensional interactions through three parallel branches, utilizing C-W, C-H, and H-W to 

capture the dependencies between channel spatial dimensions, thereby more accurately estimating 

fog concentration, restoring obscured details, and enhancing image contrast. The core idea of 

enhanced pixel attention is to regress to the pixels themselves and perform extremely refined 

analysis and enhancement on a pixel by pixel basis. Capable of finely processing non-uniform haze, 

complex textures, and lighting changes in underground images. The Global Grouping Coordinate 

Attention Module (GGCA) generates attention maps by extracting global information of feature 

maps in spatial dimensions (height and width). This module utilizes the generated attention map to 

weight the input features, effectively enhancing the model's representational ability. The EPCA 

module structure diagram is shown in Figure 2. 

 

Figure 2 EPCA module structure diagram 

2.3 GGCA module 

The core idea of the global grouping coordinate attention module is to construct an attention map 

by capturing the long-range spatial dependencies of feature maps. As shown in formula (7). 

 X ∈ ℝB×C×H×W (7) 

Firstly, based on the total number of channels C, we evenly divide all channels into G 

independent groups. Subsequently, allocate C/G channels to each group for further processing. The 

feature maps after grouping are represented by formula (8). 

137



 

 X ∈ ℝB×G×
C

G
×H×W

 (8) 

Subsequently, we perform pooling on the grouped feature maps along both the height and width 

directions. Specifically, we applied both global average pooling and global maximum pooling 

operations simultaneously. As shown in formula (9). 

 

Xh,avg = AvgPool(X) ∈ ℝB×G×
C

G
×H×1

Xh,max = MaxPool(X) ∈ ℝB×G×
C

G
×H×1

Xw,avg = AvgPool(X) ∈ ℝB×G×
C

G
×1×W

Xw,max = MaxPool(X) ∈ ℝB×G×
C

G
×1×W

 (9) 

For each grouped feature map, we apply shared convolutional layers for feature processing. This 

shared convolutional layer consists of two 1x1 convolutional layers, a batch normalization layer, 

and a ReLU activation function, used to reduce and restore channel dimensions. As shown in 

formulas (10) and (11). 

 Yh,avg =  Conv(Xh,avg),  Yh,max =  Conv(Xh,max) (10) 

 Yw,avg =  Conv(Xw,avg),  Yw,max =  Conv(Xw,max) (11) 

By adding the outputs of the convolutional layers and applying the Sigmoid activation function, 

attention weights are generated for the height and width directions. As shown in formulas (12) and 

(13). 

 Ah = σ(Yh,avg + Yh,max) ∈ ℝB×G×
C

G
×H×1

 (12) 

 Aw = σ(Yw,avg + Yw,max) ∈ ℝB×G×
𝒞

G
×1×W

 (13) 

Among them, σ represents the Sigmoid activation function. 

Finally, the input feature map is multiplied element by element with the obtained attention 

weights to achieve feature reweighting and generate the output feature map. As shown in formula 

(14). 

 O = X × Ah × Aw ∈ ℝB×C×H×W (14) 

 

Figure 3 GGCA module structure diagram 
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GGCA achieves efficient fusion of local details and global contextual information at the channel 

grouping level by grouping channels and applying global pooling and coordinate attention 

separately. It can accurately perceive the distribution of non-uniform haze underground, restore 

cross regional object structures, and enhance the representativeness of key channel features, thereby 

achieving natural dehazing effects. The structure diagram of GGCA module is shown in Figure 3. 

2.4 Triplet Attention Module 

The first branch is responsible for calculating channel attention: the input features first pass 

through the Z-Pool layer, then through a 7x7 convolutional layer, and finally generate channel 

attention weights using the Sigmoid activation function. 

The other two branches: Channel C interacts with the space W and H dimensions to capture the 

input features. The input features are first permed, then Z-Pool is performed on the W or H 

dimensions, followed by 7 × 7 convolution and batch Norm layers. Finally, add the output features 

of the three branches and calculate Avg. The structural diagram is shown in Figure 4. 

 

Figure 4 Triplet Attention Module Structure Diagram 

2.5 SE module 

The SE module divides the image dehazing process into three steps: compression, excitation, and 

reweighting. Firstly, the spatial information (i.e. height and width) of each channel is compressed 

into a single value to obtain a feature vector that contains global information for all channels. The 

dimension of this vector is 1 × 1 × C, where C is the number of channels. The input-output 

definition is shown in formula (15). 

 Ftr: X → U, X ∈ RW
′∗H′∗C′ , U ∈ RW∗H∗W (15) 

The calculation formula is a conventional convolution operation, as shown in (16). 

 uc = vc ∗ X = ∑ vc
sC′

s=1 ∗ xs (16) 

Among them, vc represents the c-th convolution kernel, xs represents the s-th input covered by 

the current convolution kernel, and C′ represents the number of convolution kernels. This operation 

results in the second matrix in the figure, with dimensions of [H, W, C]. 

Next, perform the global average pooling operation using the formula shown in (17). 

 zc = Fsq(uc) =
1

W∗H
∑ ∑ uc

H
j=1

W
i=1 (i, j) (17) 

Then perform Excitation operation, and the calculation formula is shown in (18). 
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 s = sigmoid(W2 ∗ Relu(W1z)) (18) 

Among them, z  represents the previous step's z , W1 , and W2  represent linear layers. The s 
calculated here is the core of the module, used to represent the weights of each channel, and this 

weight is learned through the fully connected and nonlinear layers mentioned earlier. 

The final Fscale operation is calculated using the formula shown in (19). 

 x̃ = Fscale(uc, sc) = sc ⋅ uc (19) 

uc represents a channel in u, and sc represents the channel weight. Therefore, it is equivalent to 

multiplying the value of each channel by its weight. 

As shown in Figure 5, the SE module enhances the critical channels for dehazing tasks and 

suppresses irrelevant information by adaptively recalibrating channel feature responses, thereby 

significantly improving the overall performance of the underground image dehazing network. 

 

Figure 5 SE module structure diagram 

3. Experimental configuration and result analysis 

3.1 Experimental dataset 

This article uses the publicly available dataset Haze-4K and a self-made non-uniform fog 

underground dataset for experimental verification. 

Haze-4K is a high-resolution dataset specifically designed for image deblurring research. It 

consists of 4000 pairs of blurred images with real blurring effects and corresponding clear images 

after deblurring, and is divided into training and testing sets in a 3:1 ratio. Including various types 

of images of cities, nature, and indoors, as well as varying degrees of haze effects. 

Given the current lack of publicly available underground coal mine image datasets, a self-made 

underground image non-uniform fog dataset is needed. This dataset is constructed by extensively 

collecting images and monitoring videos of various typical scenarios such as underground work 

faces, conveyor belts, and tunnels, ensuring its diversity and representativeness. The dataset consists 

of 5000 images and is divided into training and testing sets in a 4:1 ratio. Figure 6 shows some of 

the dataset images. 

 

Figure 6 Partial non-uniform fog images in the dataset 

3.2 Experimental Details 

The system used in this experiment is the Windows 11 system. CPU: Gen Intel(R) Core(TM) i7-

13620H 2.40 GHz. GPU: NVIDIA GeForce RTX4060. This model is developed using the Python 

programming language and the deep learning framework PyTorch. 
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This experiment uses the AdamW optimizer to train the dehazing model, with momentum 

parameters β 1 and β 2 set to 0.9 and 0.999, respectively, and an initial learning rate of 2×10−4. The 

learning rate decays from the initial value to 10−6 through cosine annealing strategy, which helps 

guide the model to explore the local optimal solution of the loss function, thereby improving 

convergence speed and generalization performance. Set the hyperparameter β to 0.1. 

3.3 Evaluation indicators 

To objectively and fairly evaluate the dehazing performance of various algorithms, this study 

jointly uses two objective indicators, Peak Signal to Noise Ratio (PSNR) and Structural Similarity 

Index (SSIM), supplemented by subjective visual analysis for comprehensive evaluation. PSNR 

quantifies the reconstruction quality by calculating the mean square error between the original 

image and the dehazed image, with higher values indicating less distortion. By combining 

subjective evaluation, the removal effect of the model on underground non-uniform haze can be 

comprehensively evaluated. 

3.4 Ablation Experiment 

In order to verify the effectiveness of the model in removing non-uniform fog underground, an 

ablation study was designed. In this study, Model 1 represents the basic model; Model 2 represents 

a model that uses only the designed GGCA module on top of the base model; Model 3 represents a 

model that uses only the Triplet module on top of the base model; Model 4 represents the use of 

only the SE module on the base model; Model 5 represents a model that uses the GGCA+Triplet 

module on top of the base model; Model 6 represents a model that uses the GGCA+SE module on 

top of the base model; Model 7 represents a model that uses the Triplet+SE module on top of the 

base model. The objective indicators of non-uniform fog removal by the model are shown in the 

figure. 

This study used two indicators, PSNR and SSIM, to quantitatively evaluate the proposed 

algorithm. The ablation experiment data in Table 1 clearly shows that the comprehensive 

performance of the model has been substantially improved. 

Table 1 Results of ablation experiment 

Model Number foundation model GGCA Triplet SE PSNR/dB SSIM 

1 √ × × × 30.56 0.949 

2 √ √ × × 30.93 0.963 

3 √ × √ × 30.70 0.956 

4 √ × × √ 31.16 0.971 

5 √ √ √ × 30.99 0.964 

6 √ √ × √ 30.48 0.943 

7 √ × √ √ 31.68 0.978 

8 √ √ √ √ 32.37 0.981 

3.5 Comparison with existing dehazing methods 

Comparing this model with existing dehazing methods, experimental results were compared and 

analyzed with DCP, AOD-Net, DehazeNet, GCA-Net, and FFA-Net algorithms under the same 

configuration. This study extracted 4 dehazing images from the underground dataset for subjective 

visual evaluation, as shown in Figure 6. 
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Figure 7 Comparison of dehazing effects of various models 

From Figure 7, it can be seen that the use of DCP for image dehazing is effective but 

accompanied by color distortion. After being processed by AOD-Net network, there is still haze in 

the image and the details and texture information are lost. Dehazenet has a certain effect on 

removing fog, but the edges of the fog are blurred and the details are distorted. The effectiveness of 

GCA-Net and FFA-Net networks in removing non-uniform fog underground needs to be improved. 

In contrast, the model proposed in this article outperforms other algorithms in removing non-

uniform fog images underground. While ensuring effective restoration of clear images, it preserves 

the color and texture information of objects, making it visually closer to clear images. 

In order to objectively evaluate the algorithm performance of the model, tests were conducted on 

the public dataset Haze4K and the underground non-uniform fog dataset under the same 

configuration. Use PSNR and SSIM as evaluation criteria. Both indicators of the algorithm in this 

article are slightly better than other algorithms, indicating that the model has good performance and 

practical significance in removing non-uniform fog underground. The results are shown in Table 2. 

Table 2 Model comparison evaluation indicators 

Algorithm 

model 

Haze4K dataset Underground non-uniform fog dataset 

PSNR/dB SSIM PSNR/dB SSIM 

DCP 19.52 0.858 19.30 0.782 

DehazeNet 19.60 0.870 19.95 0.777 

AOD-Net 17.97 0.733 19.08 0.784 

GCANet 24.47 0.919 27.82 0.881 

FFA-Net 24.26 0.928  28.26 0.926 

Our 32.18 0.963 32.37 0.981 

4. Conclusion 

The introduction of GGCA module greatly enhances the network's understanding and modeling 

ability for complex non-uniform fog distributions, achieving precise preservation of image detail 

information. The Triplet Attention module captures cross latitude interaction dependencies in a 

lightweight and efficient manner through three parallel branches, accurately modeling the 

distribution of fog, dust, and light in complex underground environments. In addition, the SE 

attention module enhances the dehazing effect by giving high weight to dense fog areas through 

sensing them. The experimental results show that this model has a certain effect on removing non-

uniform fog underground, providing a reference for obtaining high-quality underground images. 
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