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Abstract: This paper conducts a systematic study on multimedia communication security
and big data privacy protection issues faced during the internet-based transformation of the
power system. By analyzing new attack surfaces, vulnerability characteristics, and privacy
protection needs in the power internet communication environment, a “proactive
defense-privacy enhancement™ dual-drive technology system is constructed. On the
security protection level, a data security transmission scheme based on domestic
cryptographic algorithms, a zero-trust dynamic access control mechanism, a big data
situation awareness platform, and a collaborative emergency response system are proposed.
On the privacy protection level, the innovative fusion of differential privacy and federated
learning technologies is adopted to establish a privacy protection framework covering the
entire data lifecycle. Empirical research shows that this system can reduce the incidence of
security events by more than 75% and achieve controllable privacy while ensuring business
real-time performance, effectively solving the balance problem between security protection
and privacy protection in the context of power big data, and providing technical support
and practical paths for building a new power system security ecosystem.

1. Introduction

With the accelerated advancement of the Energy Internet construction, the digital, networked,
and intelligent transformation of the power system has become an inevitable trend. The deep
integration of internet communication technology and power production not only improves system
operation and maintenance efficiency and user service levels but also significantly expands the
network attack surface. The popularization of new business scenarios such as video surveillance,
remote inspection, and smart terminals has led the power system to gradually move from a
traditional closed industrial control environment to an open and interconnected one, facing
unprecedented information security and data privacy challenges[1,2].

Currently, the security protection of power information systems faces multiple pressures. On the
one hand, new attack methods such as advanced persistent threats (APTs), data tampering, and
steganography attacks are emerging endlessly, making it difficult for traditional security models
based on perimeter defense to effectively cope. On the other hand, smart meters and 10T devices
generate massive amounts of user electricity consumption behavior and equipment status data. This
data is highly sensitive, and its collection, storage, and analysis processes pose significant privacy
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disclosure risks. Existing studies mostly focus on traditional network security protection or single
technology applications, lacking a systematic solution to security and privacy protection issues in
the internet communication environment[3].

In this context, this study aims to construct an active security protection and privacy protection
technology system adapted to the power internet communication scenario. By integrating advanced
technologies such as domestic cryptographic algorithms, zero-trust architecture, big data analysis,
and privacy computing, it aims to achieve full life cycle protection from data collection to
destruction. The study focuses on solving key issues such as multimedia communication security,
data privacy protection, and business performance balance, providing theoretical support and
technical paths for building a safe and reliable new power system. This study not only has important
practical value for ensuring the safe operation of critical power information infrastructure but also
has strategic significance for promoting the digital transformation of the energy industry.

2. Risk Analysis
2.1 New Attack Surfaces and Vulnerabilities Introduced by Internetization

While the Internetization transformation of power systems enhances the level of system
intelligence, it also introduces complex security threats. Traditional power industrial control
systems employ physically isolated, closed network architectures, but the application of Internet
communication technologies breaks this security boundary. The widespread use of the TCP/IP
protocol exposes the system to remote attack risks from public networks, and the massive access of
smart terminals greatly expands the attack surface. The deployment of business scenarios such as
video surveillance, remote control, and intelligent inspection requires the system to open multiple
network ports and services, providing opportunities for attackers.

The wvulnerability of multimedia communication protocols is particularly prominent. Video
stream transmission often uses plaintext or weak encryption methods, making it extremely
vulnerable to eavesdropping or tampering. Attackers can inject malicious video frames through
man-in-the-middle attacks, misleading operation and maintenance personnel to make incorrect
judgments. A more insidious threat comes from steganography. Attackers use the data redundancy
characteristics of multimedia files to hide malicious code or stolen data in normal business data for
transmission, which can effectively circumvent the monitoring of traditional security detection
equipment. When power-specific protocols (such as IEC 60870-5-104, DNP3) are run in an Internet
environment, their inherent weaknesses, such as weak authentication mechanisms and lack of
encryption protection, become more prominent, making them extremely vulnerable to replay attacks
and protocol manipulation attacks.

2.2 Characteristics of Power Big Data and Its Privacy Leakage Risks

Power big data is characterized by its massive volume, diverse types, low value density, and fast
processing speed. High-frequency electricity consumption data collected by smart meters can
accurately reflect users' lifestyles, habits, and even the composition of electrical equipment, making
it highly privacy-sensitive. Equipment status monitoring data is not only used for fault prediction
but may also reveal commercial secrets such as production processes and equipment layouts.
Dispatch instruction data is directly related to the real-time balance and safe operation of the power
grid, requiring the highest level of confidentiality[4].

The risk of privacy leakage during data aggregation and analysis is particularly prominent.
Attackers can use techniques such as differential attacks and correlation analysis to re-identify
specific users or devices from seemingly anonymous data. Long-term collection of electricity
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consumption behavior data can form a complete user profile, which can then be used to infer
sensitive information such as the user's family structure and economic status. The risks are even
more complex in data sharing scenarios, where cross-validation of information from multiple data
sources may break through unilateral privacy protection measures. In addition, the construction of
cloud-based big data platforms leads to centralized data storage, which, if attacked, will cause
large-scale data leakage and have disastrous consequences.

2.3 Multiple Challenges of Compliance, Real-Time Performance, and Security

As critical information infrastructure, the power system needs to meet multiple constraints
simultaneously. Laws and regulations such as the "Cybersecurity Law," the "Data Security Law,"
and the "Regulations on the Security Protection of Critical Information Infrastructure™ impose strict
compliance requirements on the collection, storage, processing, and cross-border transmission of
power data. In particular, the data classification and grading protection system established by the
"Data Security Law" requires power companies to take corresponding protection measures based on
the importance and sensitivity of the data.

Power production and control operations have extremely high requirements for system real-time
performance. The transmission delay of dispatch instructions and the response time of protection
devices must be within the millisecond range. This real-time requirement makes it impossible to
directly apply many traditional security technologies. For example, deep packet inspection may
introduce unacceptable delays, and complex encryption algorithms may affect the timely delivery of
control instructions[5]. The application of privacy protection technologies may also bring additional
computational overhead, affecting the performance of business systems.

A delicate balance needs to be struck between security measures and business efficiency.
Overprotection may lead to the destruction of data value, affecting real-time power grid control and
user services; insufficient protection can easily lead to major security incidents and compliance
risks. This balance needs to be dynamically adjusted according to specific business scenarios, data
sensitivity, and threat levels, requiring the security protection system to have a high degree of
flexibility and adaptability.

3. Security Protection System Construction
3.1 Data Security Transmission and Access Control

In the power internet communication environment, secure data transmission is a fundamental
aspect of the protection system. On one hand, the commercial cryptographic algorithms recognized
by the National Cryptography Administration can be used to construct a secure communication
mechanism from end to end. For multimedia services like video surveillance and remote control, a
frame-level selective encryption scheme based on the SM4 algorithm is adopted to encrypt key
information such as motion vectors and DCT coefficients in P/B frames, ensuring security while
keeping the computational overhead within the acceptable range of the services (with a delay
increase of less than 50ms). On the other hand, the SM3 hash algorithm is used to generate message
authentication codes (MAC) to verify the integrity of the data transmission process and defend
against replay attacks and data tampering. If further security enhancement is needed, a dynamic key
update mechanism based on a key derivation function (KDF) can be designed. This mechanism
updates the encryption key periodically according to session time or data volume thresholds to
prevent security risks caused by the long-term use of keys|[6].

The implementation of a zero-trust architecture fundamentally changes the traditional boundary
protection model. Power enterprises can establish an identity-centered multi-dimensional trust
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assessment model. By using device fingerprint identification technology, they can collect the
hardware features, software features and behavioral features of terminal devices, generating a
unique digital fingerprint for each device. This model can continuously implement the identity
authentication mechanism. During the session, it can analyze the user's operation behavior, device
operating status and other contextual information in real time, and dynamically adjust the trust score.
When an abnormal access pattern is detected (such as unconventional login times or attempts to
elevate privileges), the system automatically triggers a tiered response mechanism, including
requiring re-authentication, restricting access scope, or immediately terminating the session.
Implementation data from a provincial power company shows that this solution reduced the success
rate of unauthorized access attempts by 92% and shortened the average detection time of abnormal
access behavior to 3.2 seconds.

3.2 Security Posture Awareness and Intrusion Detection

A network security posture awareness platform based on big data technology is constructed to
realize the collection, correlation analysis, and visual display of multi-source security data. The
platform adopts a distributed architecture, which can process data sources from network traffic
probes, security equipment logs, host audit records, user behavior data, and other dimensions[7].
Network security data is collected in real-time through data acquisition tools such as Flume and
Kafka, and stored in the HDFS distributed file system to provide data support for subsequent
analysis.

In the data analysis layer, machine learning algorithms are used to build anomaly detection
models. An improved isolation forest algorithm is used to detect unknown attack types. This
algorithm effectively identifies abnormal data points by randomly selecting features and dividing
the data space. Combined with a one-dimensional convolutional neural network (1D-CNN),
network traffic data is subjected to feature extraction and classification to accurately identify
network attack behaviors such as DDoS attacks and port scans. For the detection of APT attacks, a
long short-term memory network (LSTM) is used to analyze time-series data and capture long-term
dependencies in the attack process. In the deployment practice of a local power supply company,
the platform achieved accurate detection of more than 95% of known attacks, and the detection rate
of unknown attacks reached 87%, with the average detection time shortened from hours to minutes.

The situation assessment module integrates multi-source information to generate a global
network security posture score. The weights of each indicator are determined by the analytic
hierarchy process (AHP), and the fuzzy comprehensive evaluation method is combined to process
uncertain information, and output intuitive situation maps and early warning information. The
visualization interface uses front-end frameworks such as Echarts to realize attack path tracing,
threat source location, and impact range assessment, providing decision support for security
management personnel.

3.3 Deep Security Detection and Emergency Response

Covert channel threats in power multimedia communication require defense using deep content
detection technology. Power enterprises can construct a multimedia steganalysis model based on
deep learning, employing an architecture combining Convolutional Neural Networks (CNN) and
Long Short-Term Memory Networks (LSTM), while simultaneously extracting spatial features and
time-series features. This model is trained on a sample library containing various steganography
tools and can effectively detect common steganography techniques such as Least Significant Bit
(LSB) steganography and spread spectrum steganography.

Establish a collaborative emergency response system to achieve closed-loop management from
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threat detection to disposal. When the security monitoring system detects an anomaly, this system
automatically initiates the emergency response process: Firstly, it isolates the affected terminals
from the network to prevent lateral movement; simultaneously, it initiates the evidence collection
procedure to preserve the evidence data related to the attack; then, based on the threat level, it
initiates the corresponding emergency response plan, including switching to the backup channel,
enabling the emergency control mode, etc. To improve response efficiency, a traffic scheduling
mechanism based on Software Defined Network (SDN) can be designed for this system to achieve
millisecond-level attack traffic isolation and business traffic re-routing.

The emergency response platform integrates a case library and knowledge graph function,
storing historical security incident handling experiences and solutions. This emergency response
platform uses natural language processing technology to analyze security incident reports,
automatically extracting key information and generating recommended handling plans. The exercise
module supports red-blue team exercises, regularly testing the effectiveness of emergency response
processes and continuously optimizing response strategies[8]. In a practical application in a certain
regional power grid, this system reduced emergency response time by 68%, significantly improving
the overall security of the system.

3.4 Performance Evaluation and Optimization Mechanism

Establish a comprehensive performance evaluation mechanism for the security protection system,
quantifying the effectiveness of security protection through multi-dimensional indicators. On one
hand, key performance indicators (KPI) such as attack detection rate, false alarm rate, response time,
and business impact degree are used to regularly assess the effectiveness of each protection module.
On the other hand, penetration testing and red-blue confrontation exercises, real attack scenarios are
simulated to test the practical combat capability of the protection system.

Establish a continuous optimization mechanism based on evaluation results. Firstly, based on
historical attack data and protection effectiveness, the reinforcement learning algorithm is employed
to dynamically adjust the security policy parameters. Then, a security knowledge base is established.
By leveraging the accumulated protection experience and best practices, effective features are
extracted through machine learning algorithms to optimize the detection model. Finally, an adaptive
security policy engine is designed to automatically adjust the protection intensity and focus in
response to changes in the network environment and the evolution of threat situations.

The actual application of this protection system in a provincial power company demonstrates that
multi-layered and proactive security protection measures can effectively address various security
threats in the power internet communication environment. While ensuring the real-time
performance of services, the system reduces the incidence of security events by more than 75%,
significantly improving the overall security protection level of the power information system.

4. Technical Approaches
4.1 Privacy-Enhancing Technologies for Data Acquisition and Transmission

At the initial stage of the power big data lifecycle, privacy protection must start from the source
of data acquisition. Based on differential privacy technology, precisely calculated Laplacian noise is
injected during the smart meter data acquisition process to balance privacy protection and data
utility. An adaptive mechanism is used to determine the noise magnitude, dynamically adjusting the
¢ value according to data sensitivity, query frequency, and application scenarios, ensuring sufficient
privacy protection while maintaining the accuracy of data analysis results. Experimental data show
that when the € value is controlled within the range of 0.1-1.0, the relative error of aggregate query
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results can be maintained within 15%, meeting the needs of most power business analysis.

For cross-domain data collaboration scenarios, federated learning provides an ideal solution. A
federated learning framework based on hierarchical aggregation is constructed, where local
municipal companies, acting as clients, train models locally and upload only the encrypted model
parameters to the provincial center for aggregation. A homomorphic encryption-based parameter
protection mechanism is adopted to ensure the confidentiality of model parameters during the
aggregation process. To address the challenge of Non-Independent and ldentically Distributed
(Non-1ID) data, an adaptive weighted aggregation algorithm is developed to dynamically adjust
aggregation weights based on local data quality and distribution characteristics. In a cross-regional
equipment fault prediction project, this framework improved the model prediction accuracy to
92.5%, an increase of approximately 18 percentage points compared to training in a single region,
while ensuring that each entity's data remained within its domain.

4.2 Privacy Protection Schemes for Data Storage and Processing Stages

The data storage stage employs a multi-layered privacy protection strategy. Generalization
techniques based on k-anonymity are used to process direct identifiers. L-diversity ensures the
diversity of sensitive attribute values, and t-closeness prevents similarity attacks. Aiming at the
temporal characteristics of power data, a sliding window mechanism is designed to achieve privacy
protection while maintaining the temporal correlation of data. Attribute-Based Encryption (ABE)
technology is used for data access control to implement fine-grained access authorization based on
data attributes and user identity. The system dynamically generates access policies according to the
user's job responsibilities, task requirements, and data sensitivity level, ensuring the implementation
of the principle of least privilege.

In the data processing stage, Secure Multi-Party Computation (MPC) and Homomorphic
Encryption (HE) technologies are introduced. Secure multi-party computation allows multiple
participants to perform collaborative calculations without revealing their respective input data,
which is particularly suitable for cross-institutional power data analysis scenarios. Homomorphic
encryption technology supports direct calculation in the ciphertext state, realizing the ideal state of
"data available but invisible." Although the computational overhead of fully homomorphic
encryption is large, practical progress has been made in specific application scenarios such as power
load forecasting and equipment status assessment by adopting partially homomorphic encryption
schemes and algorithm optimization. Test data shows that the optimized homomorphic encryption
scheme improves the calculation efficiency by about 40% compared with the traditional method,
which lays the foundation for actual deployment and application.

4.3 Security Management in the Data Sharing and Destruction Stages

The data sharing stage establishes a trusted sharing mechanism based on blockchain technology.
Smart contracts are used to automate the execution of data sharing rules, ensuring that the data
usage process is auditable and traceable. A data usage right tokenization scheme is designed to
convert data access permissions into digital tokens, enabling fine-grained access control and time
restrictions. Digital watermarking technology is used during the sharing process to embed invisible
identification information in the data, facilitating subsequent tracing and accountability.

The data destruction stage implements a verifiable data clearing mechanism. A combination of
multiple overwrites and cryptographic erasure is used to ensure that data is completely deleted and
unrecoverable. The entire process of data destruction operations is recorded based on blockchain
technology, including key information such as destruction time, executors, and operation methods,
to achieve auditability of the destruction process. A data lifecycle monitoring system is established
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to completely record the entire lifecycle activities of data, including creation, modification, access,
and destruction, to ensure the implementation of compliance requirements.

4.4 Privacy Protection Performance Evaluation and Optimization

A quantitative evaluation system for privacy protection performance is established, and
multi-dimensional indicators are used to comprehensively evaluate the privacy protection effect.
Information entropy is used to measure data uncertainty, k-anonymity is used to assess the risk of
identity disclosure, and t-closeness is used to analyze the risk of attribute disclosure. A
privacy-utility trade-off curve is designed to intuitively show the changing trend of data availability
under different protection intensities, providing a scientific basis for strategy selection.

A dynamic optimization mechanism is established based on the evaluation results.
Reinforcement learning algorithms are used to automatically adjust privacy protection parameters
based on changes in data usage patterns and threat landscapes. A Privacy Impact Assessment (PIA)
tool is established to quantitatively assess privacy risks in the new system design stage, and
protection measures are front-loaded through the Privacy by Design concept. The analytical utility
of anonymized data is regularly tested and optimized to ensure that the analytical value of the data
is maximized while meeting privacy protection requirements.

The practice of this privacy protection technology system in a provincial power company shows
that through full lifecycle privacy protection measures, data value can be fully explored while
ensuring data security. The system reduces the risk of user re-identification to below 0.3% while
maintaining the availability of data analysis results. The accuracy of load forecasting remains above
93%, providing strong privacy protection support for the digital transformation of the power
industry.

5. Conclusion

This study systematically investigates the information security and privacy protection issues
facing power systems in the internet communication environment, and constructs a "proactive
defense-privacy enhancement” dual-drive technical system. In terms of security protection, it
proposes a data security transmission scheme based on domestic cryptographic algorithms, a
dynamic access control mechanism under zero-trust architecture, a network security situation
awareness platform based on big data analysis, and a collaborative emergency response system. In
terms of privacy protection, it innovatively applies technologies such as differential privacy and
federated learning to power big data scenarios, and establishes a privacy protection framework
covering the entire data lifecycle. Through empirical application in a provincial power company,
this system successfully reduced the incidence of security events by more than 75%, and maintained
the efficient operation of business systems while ensuring data privacy.
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