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Abstract: Additive manufacturing, also known as 3D printing, has unique process
characteristics that not only enable the production of integrated and structurally complex
parts but also meet customers' customized requirements. Because the processing times
different from those in traditional batch scheduling, the scheduling problems in additive
manufacturing face some new challenges. It is important to find a feasible solution for the
scheduling problems in additive manufacturing in a reasonable time, to let AM fully
display its advantages of cost reduction and efficiency improvement. This paper mainly
addresses a parallel-machine scheduling problem in additive manufacturing, with the
objective of minimizing the maximum tardiness of all parts. We establish a mixed-integer
linear programming (MILP) model for this problem and develop a corresponding algorithm
(Algorithm P), in which the greedy allocation stage comprehensively considers the impact
of batch membership on the objective function. We conduct a large number of numerical
experiments, and the results show that Algorithm P has advantages in terms of
computational time and the number of opened batches.

1. Introduction

Additive manufacturing (AM) is widely recognized as a disruptive technology capable of
fabricating complex, custom-tailored parts with high precision and efficiency!l. In recent years, the
application of AM has attracted increasing attention, as it promotes the transformation of
manufacturing structures and production paradigms. Compared with traditional subtractive and
forming manufacturing processes, AM utilizes software such as CAD to digitize product structures,
which greatly enhances the flexibility and transferability of production design. Through its
layer-by-layer material deposition process, AM allows the production of parts with complex
internal structures without the need for molds, achieving part integration, high strength, and
lightweight design. In recent years, additive manufacturing has gradually become the preferred
method for producing urgent parts in industries such as aerospace and medical fields due to its
advantages in meeting small-batch customization needs and rapid product development. As its
range of applications continues to expand, the uniqueness of additive manufacturing technology and
the new demands for delivery time and speed present new challenges to traditional production
scheduling.

In recent years, supply chains have been disrupted by the impact of COVID-19 and geopolitical
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conflicts, which has once again heightened attention on the resilience and efficiency of supply
chainst?. AM has great significance in restructuring supply chain structures and can achieve
sustainable competitive advantages with shorter lead times and negligible negative environmental
impactst®l. But AM machines are very expensive, industrial consumables are expensive, and a wide
range of materials is available. In practice, AM typically involves processing multiple parts
simultaneously within the same batch. Batch scheduling can partially reduce the impact of the high
fixed and operating costs associated with AM. However, the characteristics of additive
manufacturing significantly increase the complexity of parallel-machine batch scheduling problems.
AM operates in a non-preemptive manner, and the processing time for a batch is determined by the
setup time, the total volume of the parts, and the maximum height of the tallest part in the batch!l,
Consequently, different combinations of parts during batch formation phase may prolong the
overall processing time of the batch. The resulting tardiness accumulates across batch completion
times and impacts subsequent batches. Therefore, the way in which parts are grouped into batches is
a key factor influencing machine utilization and is one of the primary considerations in scheduling
decisions for additive manufacturing. The allocation of parts and the arrangement of batch
sequences have the most significant impact on the final delivery time of products. Because the
completion times of individual parts are difficult to predict accurately. Evaluating schedules under
worst-case assumptions allows potential risks to be identified early. It also provides guidance for
resource allocation and production coordination in subsequent stages.

Among commonly used scheduling performance metrics, maximum tardiness provides an
intuitive measure of schedule performance under worst-case conditions. When processing times are
uncertain, adopting a worst-case evaluation perspective helps prevent cascading tardiness caused by
a few severely tardy parts and enhances the stability of the production system. Therefore,
developing scheduling strategies that aim to minimize the maximum tardiness of all parts is of
considerable practical importance. It is critical to modify and extend the rules in traditional
scheduling problems to make them applicable to the scheduling problems in AM. But the
uncertainty in processing times makes traditional scheduling rules hard to apply directly. These
rules need to be modified and extended to address the unique challenges of additive manufacturing

In this paper, we aim to address a parallel-machine scheduling problem in additive
manufacturing, with the objective of minimizing the maximum tardiness of all parts. We establish a
mixed-integer linear programming (MILP) model that incorporates the two-dimensional bin
packing constraints for this problem. Given that the problem is NP-hard, we also develop a heuristic
algorithm (Algorithm P), which is designed based on the characteristics of processing times in AM.
Algorithm P thoroughly considers the impact of assigning parts to different available batches on the
objective function value. Computational experiments verify the feasibility and performance
advantages of the proposed mathematical model and algorithm.

The rest of the paper is organized as follows. Section 2 introduces and summarizes the literature
on scheduling problems in additive manufacturing. Section 3 establishes a mixed-integer linear
programming (MILP) model and demonstrates its effectiveness through numerical examples.
Section 4 develops a heuristic algorithm (Algorithm P) based on the characteristics of additive
manufacturing and describes its operational rules in detail. Section 5 presents and compares the
results of computational experiments. Section 6 summarizes the content of this paper and discusses
potential directions for future research.

2. Literature Review
Research on scheduling optimization in additive manufacturing has built a multi-level

framework based on the key features of the technology. Studies have gradually moved from
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focusing on single-objective optimization to decision-making that considers multiple factors and fits
complex application scenarios. Researchers have steadily improved both the efficiency and
accuracy of solving these scheduling problems through algorithmic innovations, iterative
performance improvements, and the integration of multiple methodological approaches.

Li et al. (2017) first defined the problem to minimize the average production cost per volume of
material, and proposed two heuristic rules for this problemlPl. Kucukkoc (2019) extended the
machine environment for scheduling problems in additive manufacturing, and established
mixed-integer linear programming models with the objective of minimizing the makespan(®.
Dvorak et al. (2018) developed a model based on constraint satisfaction and compatibility graph to
solve the integrated optimization problem of nesting and multi-machine scheduling in additive
manufacturing, and adopted a local search algorithm incorporating multi-fidelity nesting heuristics
for the solution®. Che et al. (2021) for the first time simultaneously considered orientation selection
and two-dimensional bin packing constraints, and established a mathematical model and a
simulated annealing algorithm with the objective of minimizing the makespanl”l. Cakici et al. (2025)
established constraint programming models for scheduling problems in different AM machine
environments, with the objective function of minimizing the makespan'®l.

With the rising demands for personalization and requirements for rapid delivery, researchers
have begun to focus on the integrated scheduling problem of production and transportation based on
additive manufacturing. Dwivedi et al. (2023) developed a mixed-integer linear programming and
variable neighborhood search method for the problem that production and transportation are carried
out synchronously™. Zehetner and Gansterer (2022) explored the AM scheduling problem with
multi-site, combining mixed-integer programming with genetic algorithms to minimize the costs?,
Kucukkoc (2024) established a mixed-integer linear programming model which considered the
costs and carbon emissions caused by production and transportation and verified its performance
through numerical experiments™tl,

Additionally, numerous scholars have engaged in in-depth discussions regarding delivery
timeliness issues in additive manufacturing production scenarios. Chergui et al. (2018) established a
mathematical model for parallel machine scheduling with the objective of minimizing total
tardiness, designed a heuristic algorithm and demonstrated its effectiveness through numerical
experiments?.  Considering that existing methods have difficulty in solving
customer-order-oriented scheduling problems with complex constraints such as batch processing
and multiple materials effectively, Zipfel et al. (2024) designed a metaheuristic to minimize the
total weighted tardiness of customer orders(*®l,

Some researchers have extended the packing constraint from one dimension to two dimensions
in order to construct scheduling optimization models that better reflect practical scenarios. Aloui
and Hadj-Hamou (2021) proposed two models to estimate production times for two different
technologies with the objective of minimizing total tardiness, and established a mixed-integer linear
programming model as well as heuristic approaches to address scheduling problems that incorporate
two-dimensional packing constraints™. Nascimento et al. (2021) developed a constraint
programming model aimed at reducing operating and tardy-deliveries expenses. Their research
investigated the nesting and scheduling strategie for irregularly shaped parts™™l. Building on this
foundation, Nascimento et al. (2024) proposed two logic-based Benders decomposition algorithms
with the objective of minimizing total tardiness®l.

For the objective of minimizing the maximum tardiness, Kapadia et al. (2019) addressed the
scheduling problem for parallel machines with randomly arriving parts. Aiming to minimize the
maximum tardiness, they employed an iterative optimization simulation (I0S) model to compare
the effects of genetic algorithms on optimizing part orientation and rotation under two different
scheduling strategies on delivery performancel*].
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Although existing literature has explored scheduling problems based on additive manufacturing
from multiple perspectives, research focusing on the objective of minimizing the maximum
tardiness is still limited. Therefore, this paper employs minimizing the maximum tardiness of all
parts as the objective function to address the parallel machine scheduling problem in additive
manufacturing. We incorporate two-dimensional bin packing constraints into the problem
formulation, establish a mixed-integer linear programming model, and propose a heuristic algorithm
for this problem.

3. Problem Description and Mathematical formulation
3.1. Problem description

This problem can be described as follows. There is a set of parts J={1, 2, ..., n} that need to be
grouped in batches B={1, 2, ..., n} on parallel identical AM machines M={1, 2, ..., m}. Each part
has a due date d;, a height h;, a volume v;, and a length I; and width w; of its minimum
rectangular bounding box. Multiple AM machines have identical parameters and can operate in
parallel. The relevant parameters of the machines are as follows: L, W and H correspond to the
length, width and height of the machine respectively. SET is the setup time. VT is the time required
for forming per unit volume of material. HT is the time required for powder-layering[®. To ensure

that any part can be built on the machine, we assumed that 1,<L, w;<W, h;<H.
3.2. Decision variables

Ump;j IS @ binary variable that equals 1 if part j is assigned to batch b of machine m, and 0
otherwise;

Zmp 1S @ binary variable that equals 1 if batch b in machine m is opened, and 0 otherwise;

left,pi I a binary variable that equals 1 if part j is located left to part i in batch b of machine m,
and 0 otherwise;

below,,,;; is a binary variable that equals 1 if part j is located below to part i in batch b of
machine m, and 0 otherwise;

(x5, yj) denotes the coordinates of the lower-left corner of part j;

h,, is the height of batch b in machine m;

PT, Iisthe processing time of batch b in machine m;
Cpp IS the completion time of batch b in machine m;
T; is the tardiness of part j.

3.3. Mixed-integer linear programming model

This problem can be modeled as follows.

minT, ., (1)
> D gl viE) @
mEMbEB

Z Uy <Mz Vb EBYMEM 3)
jel
Xt WiSW oty tM(1-Up), VM EMLVD EB,V €] (4)
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yj+1j§L-umbj+M(1-umbj),\1m EM,VbEB,VjE] (5)

leftmbji+leftmbij+bCIOmeji+belOmeij Zumbj +umbi- 1 ,VmeE M,Vb € B,VJ,I = J,_]?fl (6)
X twi<xi tM(1-leftyp; ), VM EM,Vb € B,Vj,i € 1j# (7)
yj+lj§yi+M(1-belowmbji),Vm EM,VbEB,Vj,i €] j#i (8)
Zm(bJrl)SZmbovrn = M>Vb €B (9)
hmbzhj -umbj ,Vm e M,Vb € B,V_] e] (10)
PTmb:SET‘Zmb+VT' Z Vj 'umbj +HT'hmb,Vm e M,Vb €EB (1 1)

j€J
CmeCm(b_1)+PTmb,Vm & M,Vb €B (12)
TjZCmb-dj 'umbj -M-(l-umbj),Vm € M,Vb e B,VJ eJ (13)
Tmaszjavj €J (14)
Umb; ,Zmb,leftmbji,belowmbji € {0, 1 },Xj ’yJ ,C ,TJEO,VITI = M,Vb € B,VJ,I e J,_]?fl (15)

mb

The objective function (1) aims to minimize the maximum tardiness of all parts. Constraint (2)
guarantees that each part j can be allocated to only one batch b on machine m. Constraint (3)
represents that part j can be allocated to batch b only if the batch is opened. Constraints (4) and (5)
are used to limit the physical dimensions of the parts, ensuring that the length and width of each
part do not exceed the length and width of the machine to which it is assigned. Constraints (6) to (8)
guarantee that parts assigned to the same batch must be placed on the machine without overlap,
where lefty,p; and below,,,; denote the positional relationship between part j and part i.
Constraint (9) is used to ensure the opening sequence between batches in the machine m, , meaning
that a new batch can only be opened on machine m when the preceding batch has been opened.
Constraint (10) determines the height of batch b on machine m, whose value is the maximum height
of all parts in the batch. Constraint (11) defines the processing time of batch b. Constraint (12)
defines the completion time of each batch. Constraints (13) and (14) provide the definitions for
calculating the tardiness of part j and the objective function, where the tardiness value of part j is
the difference between the completion time of its affiliated batch and its due date. Constraint (15) is
the definition of variables, and M is a sufficiently large constant.

4. Heuristic Method

In order to solve large-scale instances with higher efficiency, we propose a heuristic algorithm
(Algorithm P) tailored to improve the solution efficiency by incorporating the processing time
characteristics of additive manufacturing. Algorithm P incorporates the relevant research findings
from xx and consists of two phases: sorting and allocation. It aims to obtain feasible solutions
within a reasonable timeframe. The sorting phase of Algorithm P establishes clear part priority
criteria, providing a decision foundation for the subsequent allocation phase. This achieves logical
integration and efficient coordination between the two critical phases. It also provides a crucial
procedural basis for the scheduling performance of Algorithm P.

The allocation phase is the core component of Algorithm P. It produces the final feasible
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scheduling plan by using the part priority sequence output by the sorting phase and taking into
account the processing characteristics of additive manufacturing technology. The design quality of
the rules directly determines the solution quality and efficiency of Algorithm P. Since we consider
the two-dimensional packing constraints in this problem, Algorithm P incorporates auxiliary
algorithms to determine both the batches for parts and their specific placement locations. The
detailed rules of Algorithm P are as follows.

(1) Phase 1: Sorting. Since the objective is to minimize the maximum tardiness of all parts, we
integrate the Earliest Due Date (EDD) rule into Algorithm P, which ensures that parts are sorted in
ascending order of their due dates. As the number of parts increases, some parts are likely to have
identical due dates. To address this practical challenge, Algorithm P refines the sorting rules based
on the problem's specific characteristics. If due dates are the same, parts are sorted in ascending
order of their estimated build times. We use the batch processing time calculation formula
(Constraints (4)) to estimate the workload of each part. Prioritizing parts with smaller workloads
enables faster capacity release, which helps reduce the risk of severe part tardiness in the scheduling
scheme. If estimated processing times are also identical, parts are sorted in ascending order of their
heights. When the heights of different parts are equal, Algorithm P sorts these parts by volume in
ascending order. Such a multi-level sorting rule can effectively resolve the situation where multiple
parts have identical feature parameters. The pseudocode of the sorting phase is shown in Algorithm
4.1.

Algorithm 4.1 Algorithm P: Sorting
: for j=1to|J| do
Calculate the estimated build time PT; for part j
: end for
: Sort the parts in ascending order of their due dates (dj)
cifVi,j€J (d; =d;) then
Sort the parts in ascending order of their estimated processing times (PT;)
ifVi,jeJ (PT,=PT,;) then

Sort the parts in ascending order of their heights (h;)

ifVi,j€J (h;=h;) then

Sort the parts in ascending order of their volumes (v;)

end if
end if
: end if
: Add the sequence of parts obtained according to the above sorting rules to the list of unas-

signed parts List,nqssigned-

WoNIIaREWNE

[
Hwh o

(2) Phase 2: Allocation. The allocation phase of Algorithm P takes maximizing the utilization of
existing batches as its core principle and does not open new batches blindly. This phase evaluates
each part sequentially based on the result of the sorting phase. For each candidate batch, it evaluates
placing the part into the batch and calculates the maximum tardiness. The allocation phase selects
the batch that produces the smallest maximum tardiness to place the part. The particular rules are
described as follows.

Under the height constraint, Algorithm P uses Algorithm 4.3 to search available areas in all
existing batches for each part. From all available areas that meet the physical constraints of the part,
the one with the smallest area is selected as the candidate area for the part. Each existing batch
generates at most one such candidate area. Algorithm P then calculates the current maximum
tardiness after the part is placed into each candidate area.

If none of the existing batches on a machine can place the part, Algorithm P will create a new
batch on this machine. This operation is only performed when the total batch number constraint is

157



satisfied. Algorithm P then places the part into the new batch and calculates the current maximum
tardiness.

Compare the solutions and the batch that produces the smallest current maximum tardiness is
selected as the final placement for the part. If multiple candidate areas lead to the same value, the
one with the smallest size is chosen. After determining the final placement, Algorithm P calls
Algorithm 4.4 to remove the occupied available area. Based on the placement position of the part,
new available areas are generated by cutting along the edges of the part.

Repeat the three steps until all parts have been allocates. The pseudocode of the allocation stage
is shown in Algorithm 4.2.

Algorithm 4.2 Algorithm P: Allocation

1: for j =1 to |List,,qassigneal dO

2 Initialization: List of exist batches « 0.

3 form=1to |M| do

4 for b=1to |B| do

5: Call : Algorithm 4.3 find the candidate area A_,pqi4qce fOr part j.
6

7

8

9

if A gndidate €XiSts then
Call : Algorithm 4.4
Calculate T,,,,

3 List of exist batches < A_,,qidate
10: end if

11: end for

12: end for

13: Initialization: List of new batches « .

14: Calculate the total number of batches on all current machines num,,.

15: if current total number of batches num, < total number of parts n then

16: for the machine where the candidate area A_,,4i4q:. Was not found do

17: Create a new batch A,,,,,

18: if part j can be placed in A,,,, then

19: Calculate T,,,,

20: List of new batches < A,,,,

21: end if

22: end for

23: end if

24: Combine List of exist batches and List of new batches as List of candidate batches.
25: Select the batch from List of candidate batches that produces the smallest T,,,,,
26: if there exist multiple identical smallest T,,,, values then

27: Choose the one with the smallest size

28: end if

29: Update T4,

30: end for

Algorithm 4.3 Candidate area search rule

1: Initialization: available area « the size of machine (W x L)

2: function CANDIDATE AREA SEARCH RULE(part j)

3 From all available areas in existing batches, select area a where area width > width of
part j and area length > length of part j.

4 if multiple available areas a are found then

5 Select the area with the smallest size as the candidate area A.,,4iqate-

6: end if

7 Record the position information of A 4 pgidate-

8: end function
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Algorithm 4.4 2D placement rule

1: function 2D PLACEMENT RULE(part j)
Get the position information of A_,,4idaze-
Place part j into A gngidate-

2:
3:
4:

Remove the A,

5: end function

candidate

and update the list of available areas

5. Computational Experiments

Machine parameters and the length, width, and height of the parts were selected from Che et al.
(2021)[. According to Chergui et al. (2018)*?1 part due dates were randomly generated from 8
hours to 72 hours for small-scale instances and from 8 hours to 160 hours for large-scale instances.

5.1. Model feasibility verification

Assume that 10 parts are to be processed on two additive manufacturing machines with identical
parameters. The detailed parameters of the machines and parts are presented in Table 1 and Table 2,
respectively. The computation time of the MILP models are limited to 3600 seconds.

Table 1: Machine parameters

Length (cm) Width (cm) Height (cm) SET (h) VT (cm?® /h) HT (cm/h)
25 25 325 2 0.030864 0.7
Table 2: Part parameters
Part ID Due date VVolume Height Length Width
1 10.0 60.0 6.0 5.0 4.0
2 9.0 80.0 6.0 5.0 55
3 17.0 50.0 4.0 8.0 3.0
4 8.0 75.0 5.0 8.0 8.0
5 29.0 15.0 1.0 6.0 3.0
6 49.0 70.0 7.0 3.0 5.0
7 28.0 10.5 3.8 2.5 2.0
8 64.0 50.0 4.0 11.0 3.0
9 13.0 50.0 4.0 8.0 3.0
10 51.0 60.0 3.0 7.0 7.0
Table 3: Computational result
Machine ID | Parts | Completion time | Processing time | Total volume | Batch height
1 4. 9 9.36 9.36 125.0 5.0
1 5. 10 15.77 6.41 75.0 3.0
1 8 22.12 6.34 50.0 4.0
1 7 27.10 4.98 10.5 3.8
2 1. 2 10.52 10.52 140.0 6.0
2 3 16.86 6.34 50.0 4.0
2 6 25.92 9.06 70.0 7.0
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Table 4: Tardiness of each part

Part ID Completion time Due date Tardiness
1 10.52 10.00 0.52
2 10.52 9.00 1.52
3 16.86 17.00 0.00
4 9.36 8.00 1.36
5 15.77 29.00 0.00
6 25.92 49.00 0.00
7 27.10 28.00 0.00
8 22.12 64.00 0.00
9 9.36 13.00 0.00
10 15.77 51.00 0.00

Table 3 presents the part allocation scheme in detail. Table 4 illustrates in detail the tardiness of
each part. As shown in Table 4, a total of 7 batches were initiated on the two machines for the
scheduling of 10 parts. The Gurobi solver obtained the optimal solution of the problem within
2.1500s, with the optimal objective value of 1.52.

The experimental results clearly demonstrate that the batch height constraints, processing
sequence constraints, and completion time constraints in the proposed model all exhibit
effectiveness. These constraints ensure the stability and orderliness of the production process
through their synergistic effect, fully verifying the feasibility of the model.

5.2. Comparison of results between the MILP Model and Algorithm P

Each instance is a combination of a given number of parts and machines. For example, P5M2
means scheduling 5 parts in 2 identical AM machines. Table 5 shows the comparison between the
MILP model and Algorithm P in objective values and computation times on small-scale instances.

We can find that with the increasing of the number of parts and machines, the computational
efficiency of the Gurobi solver significantly slows down. In contrast, Algorithm P achieves shorter
computation times and a more stable growth trend, indicating a clear advantage in computational
efficiency when solving instances of the same scale.

Table 5: Computational results of the MILP model and Algorithm P on small-scale instances

Gurobi Algorithm P

Objective value | Batches | Time (s) | Objective value | Batches | Time (S)
P5M2 0.00 1 0.0500 0.00 1 0.0070
P10M2 9.09 5 0.7900 9.09 2 0.0091
P10M3 0.00 6 1.0600 0.00 3 0.0101
P15M3 0.07 15 8.2500 5.29 3 0.0203
P15M4 0.00 9 3.8700 0.00 4 0.0242
P20M4 0.00 14 49.9600 1.63 6 0.0394
P25M5 13.18 19 160.1100 13.18 4 0.0580

It is not difficult to find that when the solutions of two methods are the same, the number of
batches opened by Algorithm P is smaller than the Gurobi solver. For example, the number of
batches generated by the Gurobi solver is 15 for instance P15M3. It means that each part is
individually assigned to a batch. But for the same instance, Algorithm P produces only 3 batches,
mainly because it tends to group parts that satisfy the two-dimensional placement constraints into
the same batch whenever possible, thereby reducing idle space and improving overall resource
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utilization.
Table 6: Computational results of Algorithm P on large-scale instances

Instances Obijective value Batches Time (s)
P50M2 30.45 5 0.1257
P50M3 0.75 6 0.1486

P100M3 31.08 11 0.3904

P100M5 3.79 12 0.5467

P150M5 22.12 15 1.2621

P150M8 9.16 17 1.4492

P200M8 15.58 20 2.6132

P200M10 18.97 22 3.1994

Algorithm P is adopted to solve large-scale instances and the computational results are presented
in Table 6. By comparing the computational results reported in Table 5 and Table 6, a clear
performance difference between Algorithm P and the MILP formulation can be observed. Under a
computation time of 0.7900s, MILP is only capable of effectively solving problem instances of
P10M2. In contrast, Algorithm P can successfully handle instances with sizes reaching up to
P100M5 in 0.5467s. It can be observed that Algorithm P is able to solve instances that are
significantly larger and more complex than those handled by the MILP model, while requiring
substantially less computational time. The results indicate that Algorithm P outperforms the MILP
model in both efficiency and scalability.

In addition, as the problem scale increases, the computation time of the proposed algorithm
grows at a relatively moderate rate. Even for larger instances, it is still able to produce feasible
solutions within an acceptable time frame. These results clearly demonstrate the efficiency and
practicality of the proposed approach, and provide solid experimental evidence supporting its
applicability in real-world production scheduling scenarios.

6. Conclusion

In this paper, we examine a parallel-machine scheduling problem with two-dimensional packing
constraints in additive manufacturing, and the objective of minimizing the maximum tardiness. To
address this problem, a mixed-integer linear programming model is developed. Based on the
process characteristics of additive manufacturing and the type of objective function, a heuristic
algorithm (Algorithm P) is designed. Numerical experiments are conducted to evaluate and verify
the effectiveness of the proposed model and algorithm, as well as the advantages of the algorithm in
solution efficiency.

Future research may extend this work in several directions, such as formulating multi-objective
optimization models and incorporating more complex and realistic production environments.
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