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Abstract: Additive manufacturing, also known as 3D printing, has unique process 

characteristics that not only enable the production of integrated and structurally complex 

parts but also meet customers' customized requirements. Because the processing times 

different from those in traditional batch scheduling, the scheduling problems in additive 

manufacturing face some new challenges. It is important to find a feasible solution for the 

scheduling problems in additive manufacturing in a reasonable time, to let AM fully 

display its advantages of cost reduction and efficiency improvement. This paper mainly 

addresses a parallel-machine scheduling problem in additive manufacturing, with the 

objective of minimizing the maximum tardiness of all parts. We establish a mixed-integer 

linear programming (MILP) model for this problem and develop a corresponding algorithm 

(Algorithm P), in which the greedy allocation stage comprehensively considers the impact 

of batch membership on the objective function. We conduct a large number of numerical 

experiments, and the results show that Algorithm P has advantages in terms of 

computational time and the number of opened batches. 

1. Introduction 

Additive manufacturing (AM) is widely recognized as a disruptive technology capable of 

fabricating complex, custom-tailored parts with high precision and efficiency[1]. In recent years, the 

application of AM has attracted increasing attention, as it promotes the transformation of 

manufacturing structures and production paradigms. Compared with traditional subtractive and 

forming manufacturing processes, AM utilizes software such as CAD to digitize product structures, 

which greatly enhances the flexibility and transferability of production design. Through its 

layer-by-layer material deposition process, AM allows the production of parts with complex 

internal structures without the need for molds, achieving part integration, high strength, and 

lightweight design. In recent years, additive manufacturing has gradually become the preferred 

method for producing urgent parts in industries such as aerospace and medical fields due to its 

advantages in meeting small-batch customization needs and rapid product development. As its 

range of applications continues to expand, the uniqueness of additive manufacturing technology and 

the new demands for delivery time and speed present new challenges to traditional production 

scheduling. 

In recent years, supply chains have been disrupted by the impact of COVID-19 and geopolitical 
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conflicts, which has once again heightened attention on the resilience and efficiency of supply 

chains[2]. AM has great significance in restructuring supply chain structures and can achieve 

sustainable competitive advantages with shorter lead times and negligible negative environmental 

impacts[3]. But AM machines are very expensive, industrial consumables are expensive, and a wide 

range of materials is available. In practice, AM typically involves processing multiple parts 

simultaneously within the same batch. Batch scheduling can partially reduce the impact of the high 

fixed and operating costs associated with AM. However, the characteristics of additive 

manufacturing significantly increase the complexity of parallel-machine batch scheduling problems. 

AM operates in a non-preemptive manner, and the processing time for a batch is determined by the 

setup time, the total volume of the parts, and the maximum height of the tallest part in the batch[4]. 

Consequently, different combinations of parts during batch formation phase may prolong the 

overall processing time of the batch. The resulting tardiness accumulates across batch completion 

times and impacts subsequent batches. Therefore, the way in which parts are grouped into batches is 

a key factor influencing machine utilization and is one of the primary considerations in scheduling 

decisions for additive manufacturing. The allocation of parts and the arrangement of batch 

sequences have the most significant impact on the final delivery time of products. Because the 

completion times of individual parts are difficult to predict accurately. Evaluating schedules under 

worst-case assumptions allows potential risks to be identified early. It also provides guidance for 

resource allocation and production coordination in subsequent stages. 

Among commonly used scheduling performance metrics, maximum tardiness provides an 

intuitive measure of schedule performance under worst-case conditions. When processing times are 

uncertain, adopting a worst-case evaluation perspective helps prevent cascading tardiness caused by 

a few severely tardy parts and enhances the stability of the production system. Therefore, 

developing scheduling strategies that aim to minimize the maximum tardiness of all parts is of 

considerable practical importance. It is critical to modify and extend the rules in traditional 

scheduling problems to make them applicable to the scheduling problems in AM. But the 

uncertainty in processing times makes traditional scheduling rules hard to apply directly. These 

rules need to be modified and extended to address the unique challenges of additive manufacturing 

In this paper, we aim to address a parallel-machine scheduling problem in additive 

manufacturing, with the objective of minimizing the maximum tardiness of all parts. We establish a 

mixed-integer linear programming (MILP) model that incorporates the two-dimensional bin 

packing constraints for this problem. Given that the problem is NP-hard, we also develop a heuristic 

algorithm (Algorithm P), which is designed based on the characteristics of processing times in AM. 

Algorithm P thoroughly considers the impact of assigning parts to different available batches on the 

objective function value. Computational experiments verify the feasibility and performance 

advantages of the proposed mathematical model and algorithm. 

The rest of the paper is organized as follows. Section 2 introduces and summarizes the literature 

on scheduling problems in additive manufacturing. Section 3 establishes a mixed-integer linear 

programming (MILP) model and demonstrates its effectiveness through numerical examples. 

Section 4 develops a heuristic algorithm (Algorithm P) based on the characteristics of additive 

manufacturing and describes its operational rules in detail. Section 5 presents and compares the 

results of computational experiments. Section 6 summarizes the content of this paper and discusses 

potential directions for future research.  

2. Literature Review 

Research on scheduling optimization in additive manufacturing has built a multi-level 

framework based on the key features of the technology. Studies have gradually moved from 
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focusing on single-objective optimization to decision-making that considers multiple factors and fits 

complex application scenarios. Researchers have steadily improved both the efficiency and 

accuracy of solving these scheduling problems through algorithmic innovations, iterative 

performance improvements, and the integration of multiple methodological approaches.  

Li et al. (2017) first defined the problem to minimize the average production cost per volume of 

material, and proposed two heuristic rules for this problem[5]. Kucukkoc (2019) extended the 

machine environment for scheduling problems in additive manufacturing, and established 

mixed-integer linear programming models with the objective of minimizing the makespan[4]. 

Dvorak et al. (2018) developed a model based on constraint satisfaction and compatibility graph to 

solve the integrated optimization problem of nesting and multi-machine scheduling in additive 

manufacturing, and adopted a local search algorithm incorporating multi-fidelity nesting heuristics 

for the solution[6]. Che et al. (2021) for the first time simultaneously considered orientation selection 

and two-dimensional bin packing constraints, and established a mathematical model and a 

simulated annealing algorithm with the objective of minimizing the makespan[7]. Cakici et al. (2025)  

established constraint programming models for scheduling problems in different AM machine 

environments, with the objective function of minimizing the makespan[8]. 

With the rising demands for personalization and requirements for rapid delivery, researchers 

have begun to focus on the integrated scheduling problem of production and transportation based on 

additive manufacturing. Dwivedi et al. (2023) developed a mixed-integer linear programming and 

variable neighborhood search method for the problem that production and transportation are carried 

out synchronously[9]. Zehetner and Gansterer (2022) explored the AM scheduling problem with 

multi-site, combining mixed-integer programming with genetic algorithms to minimize the costs[10]. 

Kucukkoc (2024) established a mixed-integer linear programming model which considered the 

costs and carbon emissions caused by production and transportation and verified its performance 

through numerical experiments[11]. 

Additionally, numerous scholars have engaged in in-depth discussions regarding delivery 

timeliness issues in additive manufacturing production scenarios. Chergui et al. (2018) established a 

mathematical model for parallel machine scheduling with the objective of minimizing total 

tardiness, designed a heuristic algorithm and demonstrated its effectiveness through numerical 

experiments[12]. Considering that existing methods have difficulty in solving 

customer-order-oriented scheduling problems with complex constraints such as batch processing 

and multiple materials effectively, Zipfel et al. (2024) designed a metaheuristic to minimize the 

total weighted tardiness of customer orders[13]. 

Some researchers have extended the packing constraint from one dimension to two dimensions 

in order to construct scheduling optimization models that better reflect practical scenarios. Aloui 

and Hadj-Hamou (2021) proposed two models to estimate production times for two different 

technologies with the objective of minimizing total tardiness, and established a mixed-integer linear 

programming model as well as heuristic approaches to address scheduling problems that incorporate 

two-dimensional packing constraints[14]. Nascimento et al. (2021) developed a constraint 

programming model aimed at reducing operating and tardy-deliveries expenses. Their research 

investigated the nesting and scheduling strategie for irregularly shaped parts[15]. Building on this 

foundation, Nascimento et al. (2024) proposed two logic-based Benders decomposition algorithms 

with the objective of minimizing total tardiness[16]. 

For the objective of minimizing the maximum tardiness, Kapadia et al. (2019) addressed the 

scheduling problem for parallel machines with randomly arriving parts. Aiming to minimize the 

maximum tardiness, they employed an iterative optimization simulation (IOS) model to compare 

the effects of genetic algorithms on optimizing part orientation and rotation under two different 

scheduling strategies on delivery performance[17]. 

154



Although existing literature has explored scheduling problems based on additive manufacturing 

from multiple perspectives, research focusing on the objective of minimizing the maximum 

tardiness is still limited. Therefore, this paper employs minimizing the maximum tardiness of all 

parts as the objective function to address the parallel machine scheduling problem in additive 

manufacturing. We incorporate two-dimensional bin packing constraints into the problem 

formulation, establish a mixed-integer linear programming model, and propose a heuristic algorithm 

for this problem. 

3. Problem Description and Mathematical formulation 

3.1. Problem description 

This problem can be described as follows. There is a set of parts J={1, 2, ..., n} that need to be 

grouped in batches B={1, 2, ..., n} on parallel identical AM machines M={1, 2, ..., m}. Each part 

has a due date dj, a height hj, a volume vj, and a length lj and width wj of its minimum 

rectangular bounding box. Multiple AM machines have identical parameters and can operate in 

parallel. The relevant parameters of the machines are as follows: L, W and H correspond to the 

length, width and height of the machine respectively. SET is the setup time. VT is the time required 

for forming per unit volume of material. HT is the time required for powder-layering[4]. To ensure 

that any part can be built on the machine, we assumed that lj≤L, wj≤W, hj≤H. 

3.2. Decision variables 

umbj is a binary variable that equals 1 if part j is assigned to batch b of machine m, and 0 

otherwise; 

zmb is a binary variable that equals 1 if batch b in machine m is opened, and 0 otherwise; 

leftmbji is a binary variable that equals 1 if part j is located left to part i in batch b of machine m, 

and 0 otherwise; 

belowmbji is a binary variable that equals 1 if part j is located below to part i in batch b of 

machine m, and 0 otherwise; 

(xj, y
j
) denotes the coordinates of the lower-left corner of part j; 

hmb is the height of batch b in machine m; 

PTmb is the processing time of batch b in machine m; 

Cmb is the completion time of batch b in machine m; 

Tj is the tardiness of part j. 

3.3. Mixed-integer linear programming model 

This problem can be modeled as follows. 

minTmax (1) 

∑ ∑ umbj=1,∀j∈J

b∈Bm∈M

(2)
 

∑ umbj

j∈J

≤M∙zmb,∀b∈B,∀m∈M (3)
 

xj+wj≤W∙umbj+M(1-umbj),∀m∈M,∀b∈B,∀j∈J (4) 
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y
j
+lj≤L∙umbj+M(1-umbj),∀m∈M,∀b∈B,∀j∈J (5) 

leftmbji+leftmbij+belowmbji+belowmbij≥umbj+umbi-1,∀m∈M,∀b∈B,∀j,i∈J,j≠i (6) 

xj+wj≤xi+M(1-leftmbji),∀m∈M,∀b∈B,∀j,i∈J,j≠i (7) 

y
j
+lj≤y

i
+M(1-belowmbji),∀m∈M,∀b∈B,∀j,i∈J,j≠i (8) 

zm(b+1)≤zmb,∀m∈M,∀b∈B (9) 

hmb≥hj∙umbj,∀m∈M,∀b∈B,∀j∈J (10) 

PTmb=SET∙zmb+VT∙∑ vj∙umbj

j∈J

+HT∙hmb,∀m∈M,∀b∈B (11)
 

Cmb≥Cm(b-1)+PTmb,∀m∈M,∀b∈B (12) 

Tj≥Cmb-dj∙umbj-M∙(1-umbj),∀m∈M,∀b∈B,∀j∈J (13) 

Tmax≥Tj,∀j∈J (14) 

umbj,zmb,leftmbji,belowmbji∈{0,1},xj,yj
,C

mb

,Tj≥0,∀m∈M,∀b∈B,∀j,i∈J,j≠i (15) 

The objective function (1) aims to minimize the maximum tardiness of all parts. Constraint (2) 

guarantees that each part j can be allocated to only one batch b on machine m. Constraint (3) 

represents that part j can be allocated to batch b only if the batch is opened. Constraints (4) and (5) 

are used to limit the physical dimensions of the parts, ensuring that the length and width of each 

part do not exceed the length and width of the machine to which it is assigned. Constraints (6) to (8) 

guarantee that parts assigned to the same batch must be placed on the machine without overlap, 

where leftmbji  and belowmbji  denote the positional relationship between part j and part i. 

Constraint (9) is used to ensure the opening sequence between batches in the machine m, , meaning 

that a new batch can only be opened on machine m when the preceding batch has been opened. 

Constraint (10) determines the height of batch b on machine m, whose value is the maximum height 

of all parts in the batch. Constraint (11) defines the processing time of batch b. Constraint (12) 

defines the completion time of each batch. Constraints (13) and (14) provide the definitions for 

calculating the tardiness of part j and the objective function, where the tardiness value of part j is 

the difference between the completion time of its affiliated batch and its due date. Constraint (15) is 

the definition of variables, and M is a sufficiently large constant. 

4. Heuristic Method 

In order to solve large-scale instances with higher efficiency, we propose a heuristic algorithm 

(Algorithm P) tailored to improve the solution efficiency by incorporating the processing time 

characteristics of additive manufacturing. Algorithm P incorporates the relevant research findings 

from xx and consists of two phases: sorting and allocation. It aims to obtain feasible solutions 

within a reasonable timeframe. The sorting phase of Algorithm P establishes clear part priority 

criteria, providing a decision foundation for the subsequent allocation phase. This achieves logical 

integration and efficient coordination between the two critical phases. It also provides a crucial 

procedural basis for the scheduling performance of Algorithm P.  

The allocation phase is the core component of Algorithm P. It produces the final feasible 
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scheduling plan by using the part priority sequence output by the sorting phase and taking into 

account the processing characteristics of additive manufacturing technology. The design quality of 

the rules directly determines the solution quality and efficiency of Algorithm P. Since we consider 

the two-dimensional packing constraints in this problem, Algorithm P incorporates auxiliary 

algorithms to determine both the batches for parts and their specific placement locations. The 

detailed rules of Algorithm P are as follows.  

(1) Phase 1: Sorting. Since the objective is to minimize the maximum tardiness of all parts, we 

integrate the Earliest Due Date (EDD) rule into Algorithm P, which ensures that parts are sorted in 

ascending order of their due dates. As the number of parts increases, some parts are likely to have 

identical due dates. To address this practical challenge, Algorithm P refines the sorting rules based 

on the problem's specific characteristics. If due dates are the same, parts are sorted in ascending 

order of their estimated build times. We use the batch processing time calculation formula 

(Constraints (4)) to estimate the workload of each part. Prioritizing parts with smaller workloads 

enables faster capacity release, which helps reduce the risk of severe part tardiness in the scheduling 

scheme. If estimated processing times are also identical, parts are sorted in ascending order of their 

heights. When the heights of different parts are equal, Algorithm P sorts these parts by volume in 

ascending order. Such a multi-level sorting rule can effectively resolve the situation where multiple 

parts have identical feature parameters. The pseudocode of the sorting phase is shown in Algorithm 

4.1. 

 
(2) Phase 2: Allocation. The allocation phase of Algorithm P takes maximizing the utilization of 

existing batches as its core principle and does not open new batches blindly. This phase evaluates 

each part sequentially based on the result of the sorting phase. For each candidate batch, it evaluates 

placing the part into the batch and calculates the maximum tardiness. The allocation phase selects 

the batch that produces the smallest maximum tardiness to place the part. The particular rules are 

described as follows. 

Under the height constraint, Algorithm P uses Algorithm 4.3 to search available areas in all 

existing batches for each part. From all available areas that meet the physical constraints of the part, 

the one with the smallest area is selected as the candidate area for the part. Each existing batch 

generates at most one such candidate area. Algorithm P then calculates the current maximum 

tardiness after the part is placed into each candidate area. 

If none of the existing batches on a machine can place the part, Algorithm P will create a new 

batch on this machine. This operation is only performed when the total batch number constraint is 
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satisfied. Algorithm P then places the part into the new batch and calculates the current maximum 

tardiness. 

Compare the solutions and the batch that produces the smallest current maximum tardiness is 

selected as the final placement for the part. If multiple candidate areas lead to the same value, the 

one with the smallest size is chosen. After determining the final placement, Algorithm P calls 

Algorithm 4.4 to remove the occupied available area. Based on the placement position of the part, 

new available areas are generated by cutting along the edges of the part. 

Repeat the three steps until all parts have been allocates. The pseudocode of the allocation stage 

is shown in Algorithm 4.2. 
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5. Computational Experiments 

Machine parameters and the length, width, and height of the parts were selected from Che et al. 

(2021)[7]. According to Chergui et al. (2018)[12], part due dates were randomly generated from 8 

hours to 72 hours for small-scale instances and from 8 hours to 160 hours for large-scale instances. 

5.1. Model feasibility verification 

Assume that 10 parts are to be processed on two additive manufacturing machines with identical 

parameters. The detailed parameters of the machines and parts are presented in Table 1 and Table 2, 

respectively. The computation time of the MILP models are limited to 3600 seconds.  

Table 1: Machine parameters 

Length (cm) Width (cm) Height (cm) SET (h) VT (cm3 /h) HT (cm/h) 

25 25 32.5 2 0.030864 0.7 

Table 2: Part parameters 

Part ID Due date Volume Height Length Width 

1 10.0 60.0 6.0 5.0 4.0 

2 9.0 80.0 6.0 5.0 5.5 

3 17.0 50.0 4.0 8.0 3.0 

4 8.0 75.0 5.0 8.0 8.0 

5 29.0 15.0 1.0 6.0 3.0 

6 49.0 70.0 7.0 3.0 5.0 

7 28.0 10.5 3.8 2.5 2.0 

8 64.0 50.0 4.0 11.0 3.0 

9 13.0 50.0 4.0 8.0 3.0 

10 51.0 60.0 3.0 7.0 7.0 

Table 3: Computational result 

Machine ID Parts Completion time Processing time Total volume Batch height 

1 4、9 9.36 9.36 125.0 5.0 

1 5、10 15.77 6.41 75.0 3.0 

1 8 22.12 6.34 50.0 4.0 

1 7 27.10 4.98 10.5 3.8 

2 1、2 10.52 10.52 140.0 6.0 

2 3 16.86 6.34 50.0 4.0 

2 6 25.92 9.06 70.0 7.0 
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Table 4: Tardiness of each part 

Part ID Completion time Due date Tardiness 

1 10.52 10.00 0.52 

2 10.52 9.00 1.52 

3 16.86 17.00 0.00 

4 9.36 8.00 1.36 

5 15.77 29.00 0.00 

6 25.92 49.00 0.00 

7 27.10 28.00 0.00 

8 22.12 64.00 0.00 

9 9.36 13.00 0.00 

10 15.77 51.00 0.00 

Table 3 presents the part allocation scheme in detail. Table 4 illustrates in detail the tardiness of 

each part. As shown in Table 4, a total of 7 batches were initiated on the two machines for the 

scheduling of 10 parts. The Gurobi solver obtained the optimal solution of the problem within 

2.1500s, with the optimal objective value of 1.52. 

The experimental results clearly demonstrate that the batch height constraints, processing 

sequence constraints, and completion time constraints in the proposed model all exhibit 

effectiveness. These constraints ensure the stability and orderliness of the production process 

through their synergistic effect, fully verifying the feasibility of the model. 

5.2. Comparison of results between the MILP Model and Algorithm P 

Each instance is a combination of a given number of parts and machines. For example, P5M2 

means scheduling 5 parts in 2 identical AM machines. Table 5 shows the comparison between the 

MILP model and Algorithm P in objective values and computation times on small-scale instances. 

We can find that with the increasing of the number of parts and machines, the computational 

efficiency of the Gurobi solver significantly slows down. In contrast, Algorithm P achieves shorter 

computation times and a more stable growth trend, indicating a clear advantage in computational 

efficiency when solving instances of the same scale. 

Table 5: Computational results of the MILP model and Algorithm P on small-scale instances 

 Gurobi Algorithm P 

 Objective value Batches Time (s) Objective value Batches Time (s) 

P5M2 0.00 1 0.0500 0.00 1 0.0070 

P10M2 9.09 5 0.7900 9.09 2 0.0091 

P10M3 0.00 6 1.0600 0.00 3 0.0101 

P15M3 0.07 15 8.2500 5.29 3 0.0203 

P15M4 0.00 9 3.8700 0.00 4 0.0242 

P20M4 0.00 14 49.9600 1.63 6 0.0394 

P25M5 13.18 19 160.1100 13.18 4 0.0580 

It is not difficult to find that when the solutions of two methods are the same, the number of 

batches opened by Algorithm P is smaller than the Gurobi solver. For example, the number of 

batches generated by the Gurobi solver is 15 for instance P15M3. It means that each part is 

individually assigned to a batch. But for the same instance, Algorithm P produces only 3 batches, 

mainly because it tends to group parts that satisfy the two-dimensional placement constraints into 

the same batch whenever possible, thereby reducing idle space and improving overall resource 
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utilization. 

Table 6: Computational results of Algorithm P on large-scale instances 

Instances Objective value Batches Time (s) 

P50M2 30.45 5 0.1257 

P50M3 0.75 6 0.1486 

P100M3 31.08 11 0.3904 

P100M5 3.79 12 0.5467 

P150M5 22.12 15 1.2621 

P150M8 9.16 17 1.4492 

P200M8 15.58 20 2.6132 

P200M10 18.97 22 3.1994 

Algorithm P is adopted to solve large-scale instances and the computational results are presented 

in Table 6. By comparing the computational results reported in Table 5 and Table 6, a clear 

performance difference between Algorithm P and the MILP formulation can be observed. Under a 

computation time of 0.7900s, MILP is only capable of effectively solving problem instances of 

P10M2. In contrast, Algorithm P can successfully handle instances with sizes reaching up to 

P100M5 in 0.5467s. It can be observed that Algorithm P is able to solve instances that are 

significantly larger and more complex than those handled by the MILP model, while requiring 

substantially less computational time. The results indicate that Algorithm P outperforms the MILP 

model in both efficiency and scalability. 

In addition, as the problem scale increases, the computation time of the proposed algorithm 

grows at a relatively moderate rate. Even for larger instances, it is still able to produce feasible 

solutions within an acceptable time frame. These results clearly demonstrate the efficiency and 

practicality of the proposed approach, and provide solid experimental evidence supporting its 

applicability in real-world production scheduling scenarios. 

6. Conclusion 

In this paper, we examine a parallel-machine scheduling problem with two-dimensional packing 

constraints in additive manufacturing, and the objective of minimizing the maximum tardiness. To 

address this problem, a mixed-integer linear programming model is developed. Based on the 

process characteristics of additive manufacturing and the type of objective function, a heuristic 

algorithm (Algorithm P) is designed. Numerical experiments are conducted to evaluate and verify 

the effectiveness of the proposed model and algorithm, as well as the advantages of the algorithm in 

solution efficiency. 

Future research may extend this work in several directions, such as formulating multi-objective 

optimization models and incorporating more complex and realistic production environments. 
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