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Abstract: To address the issue of accuracy degradation caused by error accumulation over
time in satellite clock bias forecasting using the grey model, a metabolic grey model is
proposed. This model continuously updates satellite clock bias data sequences by removing
outdated data, maintaining the system in a state of constant renewal to enhance forecasting
accuracy. Forecasting trials were carried out utilizing satellite clock bias data with a
30-second sampling frequency, provided by the GNSS Analysis Center at Wuhan
University. Forecasting approaches such as the linear polynomial model, quadratic
polynomial model, grey model, and metabolic grey model were employed to perform
6-hour-ahead predictions, with actual clock bias data used as the reference benchmark for
validation. Experimental results demonstrate that the metabolic grey model achieves
significantly improved forecasting accuracy and stability. Achieving an average 6-hour
prediction accuracy and stability of 0.17 ns and 0.32 ns, respectively, the proposed model
demonstrates significant improvements over the linear polynomial, quadratic polynomial,
and conventional grey models. Specifically, the average prediction accuracy is enhanced
by 50.00%, 83.67%, and 39.29%, while prediction stability is improved by 41.82%,
83.51%, and 28.89% compared to these models.

1. Introduction

The Global Navigation Satellite System (GNSS) is a satellite-based radio navigation system that
delivers three-dimensional positioning, velocity, and timing data to users anywhere on or near the
Earth's surface, operating reliably under all weather conditions. Satellite clocks serve as one of the
fundamental guarantees for delivering high-precision Positioning, Navigation and Timing (PNT)
services [1]. Accurate prediction of satellite clock bias (SCB) is essential to maintain dependable
positioning, navigation, and timing (PNT) services provided by GNSS. Due to the sensitivity and
inherent complexity of satellite atomic clocks, coupled with their susceptibility to external
environmental influences, it is challenging to precisely understand their variation patterns, making
the development of high-accuracy clock bias prediction models difficult. At the same time, the
high-precision clock bias information supplied by the International GNSS Service (IGS) frequently
falls short of satisfying real-time application demands. Therefore, developing prediction models to
generate high-precision clock bias products is critically important [2-3].

Currently, to enhance the accuracy of the SCB prediction, researchers have developed numerous
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prediction models, such as the Linear Polynomial Model (LPM), Quadratic Polynomial Model
(QPM), and Grey Model (GM (1,1)), and so on [4-10]. These approaches can be used to forecast the
clock offset characteristics of navigation satellites under different operational conditions, yet each
comes with specific applicability and inherent constraints. For instance, the LPM requires minimal
fitting data but exhibits decreasing forecast accuracy with extended fitting periods; the QPM is
relatively simple to construct and can effectively enhance forecast precision by increasing modeling
data volume, demonstrating significant effectiveness in short-term clock bias prediction. However,
due to error accumulation, its prediction accuracy gradually declines with extended prediction
durations; the GM (1,1) offers advantages such as minimal data requirements and rapid modeling
speed, delivering satisfactory forecasting results for both short-term and long-term clock bias.
However, over time, random disturbances continuously enter the system, diminishing the influence
of earlier data on later data. This simultaneously reduces the model's predictive accuracy, leading to
progressively larger prediction errors.

This paper considers that the GM (1,1) possess the advantages of requiring fewer samples for
modeling and being suitable for long-term clock bias forecasting. However, as time progresses, all
forecast results utilize the same segment of outdated information. Consequently, the model exhibits
weak descriptive capability for locally varying regions within the predicted data, fails to accurately
fit the actual curve, and consequently experiences increasing errors. To address this issue and
further enhance the accuracy and stability of SCB forecasting while mitigating the impact of
random disturbances on the system's evolution over time, the metabolic grey model (MGM (1,1))
was developed. This model continuously updates the SCB data sequence by removing outdated data,
keeping the entire system in a state of constant renewal and development. This approach not only
accounts for localized effects of random disturbances but also achieves high alignment with the
overall variation curve.

2. Metabolic grey model-based approach for predicting clock bias
2.1 Establishing the grey model
Consider a complete, continuous and high-quality original SCB data sequence:
X © _ {X(O) (1),)((0) (2) x© (n)} (1)
Performing a single accumulation yields the newly generated data sequence:
X® ={x (1), x¥ (2),+,x ()} )
where x(l)(m)zix(o)(i) m=12,---.n-
The following equzétion is referred to as the original form of the GM (1,1) model.
X% (k)+ax" (k)=b k=12,-,n 3)
The following equation is referred to as the basic form of the GM (1,1) model.

x(o)(k)+az(1)(k)=b k=12,---,n )

where ;0 (k) =%[x(l) ()+x¥ (k-1)] k=2,3--n.

The following first-order linear differential equation is called the whitened equation of equation
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(4).
d X(l)
dt

+az¥ (k)=b (5)
The parameters a and b are estimated using the least squares method from equation (4):
a=(B'B) B'Y (6)

where u=[a,b]T is the parameter vector, and

x (1) -z%(2) 1
© _,0
v | X :(2) B- z (:3) 1 0
EOIESOR

Equation (4) can be expressed as Y =BuU.
Taking the initial values R (t)|t:1: x© (1) the solution to the whitening equation is obtained
as:

(=[x @)-3 Je 042 ®
b b
Equation (8) can be reduced by successive subtraction to:
£ (k +1)= W (k +1)_ {® (k) _ (1—83)(X(0) (1)_2}—:;« K=12-.n-1 ©)
a

The coefficient a represents the development factor of the GM (1,1), reflecting the trend of &

and 8. The coefficient b is termed the grey interaction quantity. It is exogenous or derived
from the context of practical problems, reflecting the relationship of data changes, whose precise
connotation is grey.

2.2 Establishing the metabolic grey model

In the real world, any grey system is subject to random disturbance factors over time. Therefore,
it is essential to continuously account for disturbance factors entering the system successively over
time. While constantly incorporating new information, outdated information must be promptly
discarded, ensuring the entire system remains in a state of continuous renewal and development.

The metabolic model, also known as the dynamic isometric new information model, involves
supplementing a single value from the traditional GM (1,1) model into the known sequence while
simultaneously removing the oldest data point. A new GM (1,1) model is then established to predict
the next value, with the result re-inserted into the original sequence. The oldest data point is
removed again, and this iterative cycle continues for sequential predictions until the target
forecasting requirements are met. This modeling approach overcomes the limitations of the
traditional GM (1,1) model [11-12]. Figure 1 depicts the detailed prediction process of the
metabolic GM(1,1) model:
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Figure 1: Flow diagram illustrating satellite clock bias forecasting using a metabolic grey model.

3 Experiments and analysis

3.1 Experimental data source

To assess the performance and practicality of the proposed method, high-accuracy SCB
observations from GPS week 2377, day 1, supplied by the GNSS Analysis Center at Wuhan
University, were utilized as experimental data. These measurements were recorded at a sampling
rate of 30 seconds. During this period, 32 satellites were in orbit. Prediction experiments were
conducted using randomly chosen clock bias data from six satellites: PRN 06, PRN 16, PRN 23,
PRN 24, PRN 25, and PRN 30. Detailed information about them is provided in Table 1.

Table 1: Key satellite-related information selected for analysis.

Satellite ID | Clock type Launch date Clock bias trend
PRN 06 II-F -Rb May 17, 2014 Negative values monotonically decreasing
PRN 16 I1-R-Rb January 29, 2003 Positive values monotonically increasing
PRN 23 I11-A-RDb June 30, 2020 Positive values monotonically increasing
PRN 24 I1-F-Rb October 4, 2012 Negative values monotonically increasing
PRN 25 I1-F-Rb May 28, 2010 Positive values monotonically decreasing
PRN 30 I1-F-Rb February 21, 2014 Negative values monotonically increasing

Figure 2 shows the clock bias variations of six satellites over a continuous 6 h period. The time
series of clock bias for PRN 06 and PRN 25 exhibit a steady downward trend, whereas PRN 16,
PRN 23, PRN 24, and PRN 30 display a persistent upward movement, reflecting adequate

representativeness.
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Figure 2: Chart of clock bias variation for the PRN 06, PRN 16, PRN 23, PRN 24, PRN 25 and
PRN 30 satellites.

3.2 Prediction results and analysis

To fully evaluate the forecasting performance and feasibility of the proposed method, clock bias
data from the first 6 hours of GPS week 2377 were used to establish linear polynomial model
(LPM), quadratic polynomial model (QPM), grey models (GM (1,1)) and metabolic grey model
(MGM (1,1)), respectively, for forecasting clock bias over the subsequent 6 h. The forecast
inaccuracies of each model were calculated by taking the difference between the predicted clock
bias from each model and the actual high-precision clock bias data released by the GNSS Analysis
Center at Wuhan University for the following 6-hour period. To evaluate and compare the predictive
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performance of the models, two statistical measures were employed: the root mean square error

(RMS) and the extreme value range (Range).

The formulas for calculating RMS and Range are as follows:

Range = max (X, — % )—min(x —%;)

(10)

(11)

Figure 3 and Table 2 present the fluctuations in forecasting errors and the corresponding

statistical outcomes for each model.
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Figure 3: Forecast error variation chart of 6 h satellite clock bias.



Table 2: Statistical analysis results of satellite clock bias prediction error (Unit: ns)

Model | Assessment Metric | PRN06 | PRN16 | PRN23 | PRN24 | PRN25 | PRN 30
LPM RMS 0.43 0.69 0.13 0.37 0.07 0.35
Range 0.79 1.05 0.22 0.39 0.15 0.70
OPM RMS 0.79 2.82 0.46 1.32 0.07 0.72
Range 1.40 5.57 0.63 2.54 0.14 1.46
GM RMS 0.30 0.48 0.13 0.43 0.07 0.24
(1,1) Range 0.57 0.81 0.25 0.50 0.15 0.43
MGM RMS 0.20 0.17 0.14 0.21 0.08 0.22
(1,1) Range 0.39 0.55 0.22 0.23 0.15 0.36

Table 3: Mean prediction accuracy, stability and corresponding improvement rates for each model
across a 6-hour period.

Model RMS Range
MGM (1,1) 0.17 0.32
LPM 0.34 0.55
Improvement (%) 50.00 41.82
QPM 1.03 1.96
Improvement (%) 83.50 83.67
GM (1,1) 0.28 0.45
Improvement (%) 39.29 28.89
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Figure 4: 6 h average prediction accuracy and stability.

Combining Figures 3-4 and Tables 2-3 reveals:

For 6 h short-term forecasts, the linear polynomial model achieved a mean prediction accuracy
of 0.34ns and an average prediction stability of 0.55ns; the quadratic polynomial model achieved a
mean prediction accuracy of 1.03 ns and an average prediction stability of 1.94 ns; the grey model
achieved a mean prediction accuracy of 0.27 ns and an average prediction stability of 0.45 ns; the
metabolic grey model achieved a mean prediction accuracy of 0.17 ns and an average prediction
stability of 0.32 ns. Compared to the linear polynomial model, quadratic polynomial model and
grey model, the metabolic grey model achieved improvements of 50.00%, 83.67% and 39.29% in
average forecast accuracy, as well as 41.82%, 83.51% and 28.89% in average forecast stability.

As shown in the forecast error statistics in Table 2, clock bias forecast accuracy varies among
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different satellites. Further analysis of the satellite launch time information in Table 1 reveals that
satellites launched later (e.g., PRN 23, launched in 2020) demonstrate higher forecast accuracy and
stability across multiple models. Their forecast accuracy and stability are generally lower than those
of earlier satellites (e.g., PRN 16, launched in 2003), a phenomenon potentially related to the
technological evolution of satellite clocks. Newer-generation satellites (e.g., PRN 23 equipped with
the third-generation rubidium clock) typically exhibit superior frequency stability and lower noise
characteristics, resulting in more stable clock offset sequences that facilitate more reliable clock
offset predictions. Furthermore, satellites sharing the same I1-F type rubidium clock (e.g., PRN 06,
PRN 24, PRN 25, PRN 30) launched around the same period (2010-2014) exhibit varying forecast
accuracy and stability. This phenomenon may stem from inherent differences in atomic clock
manufacturing (e.g., slight variations in initial frequency accuracy, frequency stability and
frequency drift rate), coupled with significantly differing operational environments that cause
non-uniform rates of performance degradation.

4. Conclusion

To improve the precision and reliability of satellite clock bias forecasting, this study introduces
an innovative metabolic grey modeling framework specifically designed to accommodate the
unique features of satellite clock bias data while overcoming shortcomings present in current grey
models. First, the grey model predicts the clock bias data for the next time step. This predicted data
is then added to the original sequence while removing the oldest data point. This process repeats
cyclically until prediction completion. This method addresses the limitation of traditional grey
models, where prediction errors inevitably increase over time due to random disturbances. The
proposed approach mitigates this effect. Finally, a 6 h forecasting experiment was conducted using
satellite clock bias data sequences exhibiting two typical trends (monotonically increasing and
monotonically decreasing). The results validated the feasibility and stability of this method for
satellite clock bias forecasting, demonstrating significantly superior performance compared to
commonly used the linear polynomial model, the quadratic polynomial model and grey model. This
approach offers a novel perspective for achieving high-precision satellite clock bias forecasting.
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