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Abstract: To address the issue of accuracy degradation caused by error accumulation over 

time in satellite clock bias forecasting using the grey model, a metabolic grey model is 

proposed. This model continuously updates satellite clock bias data sequences by removing 

outdated data, maintaining the system in a state of constant renewal to enhance forecasting 

accuracy. Forecasting trials were carried out utilizing satellite clock bias data with a 

30-second sampling frequency, provided by the GNSS Analysis Center at Wuhan 

University. Forecasting approaches such as the linear polynomial model, quadratic 

polynomial model, grey model, and metabolic grey model were employed to perform 

6-hour-ahead predictions, with actual clock bias data used as the reference benchmark for 

validation. Experimental results demonstrate that the metabolic grey model achieves 

significantly improved forecasting accuracy and stability. Achieving an average 6-hour 

prediction accuracy and stability of 0.17 ns and 0.32 ns, respectively, the proposed model 

demonstrates significant improvements over the linear polynomial, quadratic polynomial, 

and conventional grey models. Specifically, the average prediction accuracy is enhanced 

by 50.00%, 83.67%, and 39.29%, while prediction stability is improved by 41.82%, 

83.51%, and 28.89% compared to these models. 

1. Introduction 

The Global Navigation Satellite System (GNSS) is a satellite-based radio navigation system that 

delivers three-dimensional positioning, velocity, and timing data to users anywhere on or near the 

Earth's surface, operating reliably under all weather conditions. Satellite clocks serve as one of the 

fundamental guarantees for delivering high-precision Positioning, Navigation and Timing (PNT) 

services [1]. Accurate prediction of satellite clock bias (SCB) is essential to maintain dependable 

positioning, navigation, and timing (PNT) services provided by GNSS. Due to the sensitivity and 

inherent complexity of satellite atomic clocks, coupled with their susceptibility to external 

environmental influences, it is challenging to precisely understand their variation patterns, making 

the development of high-accuracy clock bias prediction models difficult. At the same time, the 

high-precision clock bias information supplied by the International GNSS Service (IGS) frequently 

falls short of satisfying real-time application demands. Therefore, developing prediction models to 

generate high-precision clock bias products is critically important [2-3]. 

Currently, to enhance the accuracy of the SCB prediction, researchers have developed numerous 
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prediction models, such as the Linear Polynomial Model (LPM), Quadratic Polynomial Model 

(QPM), and Grey Model (GM (1,1)), and so on [4-10]. These approaches can be used to forecast the 

clock offset characteristics of navigation satellites under different operational conditions, yet each 

comes with specific applicability and inherent constraints. For instance, the LPM requires minimal 

fitting data but exhibits decreasing forecast accuracy with extended fitting periods; the QPM is 

relatively simple to construct and can effectively enhance forecast precision by increasing modeling 

data volume, demonstrating significant effectiveness in short-term clock bias prediction. However, 

due to error accumulation, its prediction accuracy gradually declines with extended prediction 

durations; the GM (1,1) offers advantages such as minimal data requirements and rapid modeling 

speed, delivering satisfactory forecasting results for both short-term and long-term clock bias. 

However, over time, random disturbances continuously enter the system, diminishing the influence 

of earlier data on later data. This simultaneously reduces the model's predictive accuracy, leading to 

progressively larger prediction errors. 

This paper considers that the GM (1,1) possess the advantages of requiring fewer samples for 

modeling and being suitable for long-term clock bias forecasting. However, as time progresses, all 

forecast results utilize the same segment of outdated information. Consequently, the model exhibits 

weak descriptive capability for locally varying regions within the predicted data, fails to accurately 

fit the actual curve, and consequently experiences increasing errors. To address this issue and 

further enhance the accuracy and stability of SCB forecasting while mitigating the impact of 

random disturbances on the system's evolution over time, the metabolic grey model (MGM (1,1)) 

was developed. This model continuously updates the SCB data sequence by removing outdated data, 

keeping the entire system in a state of constant renewal and development. This approach not only 

accounts for localized effects of random disturbances but also achieves high alignment with the 

overall variation curve. 

2. Metabolic grey model-based approach for predicting clock bias 

2.1 Establishing the grey model 

Consider a complete, continuous and high-quality original SCB data sequence: 
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Performing a single accumulation yields the newly generated data sequence: 
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The following equation is referred to as the original form of the GM (1,1) model. 

       0 1
   1, 2, ,x k ax k b k n                          (3) 

The following equation is referred to as the basic form of the GM (1,1) model. 
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The following first-order linear differential equation is called the whitened equation of equation 
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(4). 
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The parameters a  and b  are estimated using the least squares method from equation (4): 
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Equation (4) can be expressed as Y Bu . 

Taking the initial values 
       1 0

1
ˆ | 1tx t x  , the solution to the whitening equation is obtained 

as: 
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Equation (8) can be reduced by successive subtraction to: 
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The coefficient a  represents the development factor of the GM (1,1), reflecting the trend of
 1

x̂  

and 
 0

x̂ . The coefficient b  is termed the grey interaction quantity. It is exogenous or derived 

from the context of practical problems, reflecting the relationship of data changes, whose precise 

connotation is grey. 

2.2 Establishing the metabolic grey model 

In the real world, any grey system is subject to random disturbance factors over time. Therefore, 

it is essential to continuously account for disturbance factors entering the system successively over 

time. While constantly incorporating new information, outdated information must be promptly 

discarded, ensuring the entire system remains in a state of continuous renewal and development. 

The metabolic model, also known as the dynamic isometric new information model, involves 

supplementing a single value from the traditional GM (1,1) model into the known sequence while 

simultaneously removing the oldest data point. A new GM (1,1) model is then established to predict 

the next value, with the result re-inserted into the original sequence. The oldest data point is 

removed again, and this iterative cycle continues for sequential predictions until the target 

forecasting requirements are met. This modeling approach overcomes the limitations of the 

traditional GM (1,1) model [11-12]. Figure 1 depicts the detailed prediction process of the 

metabolic GM(1,1) model: 
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Figure 1: Flow diagram illustrating satellite clock bias forecasting using a metabolic grey model. 

3 Experiments and analysis 

3.1 Experimental data source 

To assess the performance and practicality of the proposed method, high-accuracy SCB 

observations from GPS week 2377, day 1, supplied by the GNSS Analysis Center at Wuhan 

University, were utilized as experimental data. These measurements were recorded at a sampling 

rate of 30 seconds. During this period, 32 satellites were in orbit. Prediction experiments were 

conducted using randomly chosen clock bias data from six satellites: PRN 06, PRN 16, PRN 23, 

PRN 24, PRN 25, and PRN 30. Detailed information about them is provided in Table 1. 

Table 1: Key satellite-related information selected for analysis. 

Satellite ID Clock type Launch date Clock bias trend 

PRN 06 II-F -Rb May 17, 2014 Negative values monotonically decreasing 

PRN 16 II-R-Rb January 29, 2003 Positive values monotonically increasing 

PRN 23 III-A-Rb June 30, 2020 Positive values monotonically increasing 

PRN 24 II-F-Rb October 4, 2012 Negative values monotonically increasing 

PRN 25 II-F-Rb May 28, 2010 Positive values monotonically decreasing 

PRN 30 II-F-Rb February 21, 2014 Negative values monotonically increasing 

Figure 2 shows the clock bias variations of six satellites over a continuous 6 h period. The time 

series of clock bias for PRN 06 and PRN 25 exhibit a steady downward trend, whereas PRN 16, 

PRN 23, PRN 24, and PRN 30 display a persistent upward movement, reflecting adequate 

representativeness. 
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(a) PRN06 (b) PRN25 

  
(c) PRN16 (d) PRN24 

  
(e) PRN23 (f) PRN30 

Figure 2: Chart of clock bias variation for the PRN 06, PRN 16, PRN 23, PRN 24, PRN 25 and 

PRN 30 satellites. 

3.2 Prediction results and analysis 

To fully evaluate the forecasting performance and feasibility of the proposed method, clock bias 

data from the first 6 hours of GPS week 2377 were used to establish linear polynomial model 

(LPM), quadratic polynomial model (QPM), grey models (GM (1,1)) and metabolic grey model 

(MGM (1,1)), respectively, for forecasting clock bias over the subsequent 6 h. The forecast 

inaccuracies of each model were calculated by taking the difference between the predicted clock 

bias from each model and the actual high-precision clock bias data released by the GNSS Analysis 

Center at Wuhan University for the following 6-hour period. To evaluate and compare the predictive 
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performance of the models, two statistical measures were employed: the root mean square error 

(RMS) and the extreme value range (Range). 

The formulas for calculating RMS and Range are as follows: 

 
2

1

1
ˆ

n

i i

i

RMS x x
n 

                               (10) 

   ˆ ˆmax mini i i iRange x x x x                            (11) 

Figure 3 and Table 2 present the fluctuations in forecasting errors and the corresponding 

statistical outcomes for each model. 

  
(a) PRN06 (b) PRN16 

  
(c) PRN23 (d) PRN24 

  
(e) PRN25 (f) PRN30 

Figure 3: Forecast error variation chart of 6 h satellite clock bias. 
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Table 2: Statistical analysis results of satellite clock bias prediction error (Unit: ns) 

Model Assessment Metric PRN 06 PRN 16 PRN 23 PRN 24 PRN 25 PRN 30 

LPM 
RMS 0.43 0.69 0.13 0.37 0.07 0.35 

Range 0.79 1.05 0.22 0.39 0.15 0.70 

QPM 
RMS 0.79 2.82 0.46 1.32 0.07 0.72 

Range 1.40 5.57 0.63 2.54 0.14 1.46 

GM 

(1,1) 

RMS 0.30 0.48 0.13 0.43 0.07 0.24 

Range 0.57 0.81 0.25 0.50 0.15 0.43 

MGM 

(1,1) 

RMS 0.20 0.17 0.14 0.21 0.08 0.22 

Range 0.39 0.55 0.22 0.23 0.15 0.36 

Table 3: Mean prediction accuracy, stability and corresponding improvement rates for each model 

across a 6-hour period. 

Model RMS Range 

MGM (1,1) 0.17 0.32 

LPM 0.34 0.55 

Improvement (%) 50.00 41.82 

QPM 1.03 1.96 

Improvement (%) 83.50 83.67 

GM (1,1) 0.28 0.45 

Improvement (%) 39.29 28.89 

 

Figure 4: 6 h average prediction accuracy and stability. 

Combining Figures 3-4 and Tables 2-3 reveals: 

For 6 h short-term forecasts, the linear polynomial model achieved a mean prediction accuracy 

of 0.34ns and an average prediction stability of 0.55ns; the quadratic polynomial model achieved a 

mean prediction accuracy of 1.03 ns and an average prediction stability of 1.94 ns; the grey model 

achieved a mean prediction accuracy of 0.27 ns and an average prediction stability of 0.45 ns; the 

metabolic grey model achieved a mean prediction accuracy of 0.17 ns and an average prediction 

stability of 0.32 ns. Compared to the linear polynomial model, quadratic polynomial model and 

grey model, the metabolic grey model achieved improvements of 50.00%, 83.67% and 39.29% in 

average forecast accuracy, as well as 41.82%, 83.51% and 28.89% in average forecast stability. 

As shown in the forecast error statistics in Table 2, clock bias forecast accuracy varies among 
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different satellites. Further analysis of the satellite launch time information in Table 1 reveals that 

satellites launched later (e.g., PRN 23, launched in 2020) demonstrate higher forecast accuracy and 

stability across multiple models. Their forecast accuracy and stability are generally lower than those 

of earlier satellites (e.g., PRN 16, launched in 2003), a phenomenon potentially related to the 

technological evolution of satellite clocks. Newer-generation satellites (e.g., PRN 23 equipped with 

the third-generation rubidium clock) typically exhibit superior frequency stability and lower noise 

characteristics, resulting in more stable clock offset sequences that facilitate more reliable clock 

offset predictions. Furthermore, satellites sharing the same II-F type rubidium clock (e.g., PRN 06, 

PRN 24, PRN 25, PRN 30) launched around the same period (2010–2014) exhibit varying forecast 

accuracy and stability. This phenomenon may stem from inherent differences in atomic clock 

manufacturing (e.g., slight variations in initial frequency accuracy, frequency stability and 

frequency drift rate), coupled with significantly differing operational environments that cause 

non-uniform rates of performance degradation. 

4. Conclusion 

To improve the precision and reliability of satellite clock bias forecasting, this study introduces 

an innovative metabolic grey modeling framework specifically designed to accommodate the 

unique features of satellite clock bias data while overcoming shortcomings present in current grey 

models. First, the grey model predicts the clock bias data for the next time step. This predicted data 

is then added to the original sequence while removing the oldest data point. This process repeats 

cyclically until prediction completion. This method addresses the limitation of traditional grey 

models, where prediction errors inevitably increase over time due to random disturbances. The 

proposed approach mitigates this effect. Finally, a 6 h forecasting experiment was conducted using 

satellite clock bias data sequences exhibiting two typical trends (monotonically increasing and 

monotonically decreasing). The results validated the feasibility and stability of this method for 

satellite clock bias forecasting, demonstrating significantly superior performance compared to 

commonly used the linear polynomial model, the quadratic polynomial model and grey model. This 

approach offers a novel perspective for achieving high-precision satellite clock bias forecasting. 
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