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Abstract: Household financial vulnerability reflects the likelihood that a household will fall 

into financial distress when facing adverse shocks, and it is a key micro-foundation of 

financial system stability. Using microdata from the China Household Finance Survey 

(CHFS), this study develops a machine-learning-based risk management framework to 

examine how liquidity constraints affect household financial vulnerability and to identify 

high-risk groups under heterogeneous socioeconomic conditions. Household financial 

vulnerability is operationalized as a binary outcome, denoted as the Financial Vulnerability 

Index (FVI), indicating whether liquid buffers are sufficient to cover unexpected 

expenditures. Liquidity constraints are measured through credit accessibility indicators, 

forming a binary Liquidity Constraint (LC) variable. The framework integrates (i) high-

performance tabular prediction models, including gradient-boosted decision trees and neural 

tabular networks, to construct calibrated probability-of-vulnerability scores; (ii) 

explainability techniques, with Shapley Additive Explanations (SHAP) used to quantify 

global and local risk drivers; and (iii) causal machine learning methods, such as Double 

Machine Learning (DML) and generalized random forests, to estimate the heterogeneous 

causal effect of liquidity constraints on financial vulnerability across income groups, city 

tiers, and regions. To enhance model reliability for risk governance, probability calibration 

and distribution-free uncertainty quantification are implemented via conformal prediction. 

Empirical results indicate that liquidity constraints significantly increase the predicted and 

causally estimated risk of household financial vulnerability, with stronger effects 

concentrated among middle-to-lower income households and households located in lower-

tier cities and economically stressed regions. The proposed framework provides an 

algorithmic basis for targeted inclusive-finance interventions and household risk mitigation 

policies. 
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1. Introduction  

Household financial vulnerability describes the heightened likelihood that a household will enter 

financial distress when exposed to adverse income or expenditure shocks, and it has become 

increasingly salient for both inclusive-finance design and financial stability monitoring. Recent 

evidence shows that vulnerability can be measured through the adequacy of household buffers under 

shock scenarios and that its incidence is highly heterogeneous across population subgroups and 

economic environments [1]. Related research further demonstrates that vulnerability is tightly linked 

to consumer-debt conditions and repayment burdens, implying that balance-sheet structures and 

short-run liquidity pressures can materially change which households are classified as financially 

vulnerable [2]. In addition, modern household-finance models emphasize that liquidity constraints 

are pervasive and economically meaningful, shaping households’ ability to smooth consumption and 

respond to shocks, thereby providing a mechanism through which liquidity frictions can amplify 

vulnerability risk [3]. 

Despite these advances, much of the empirical household-finance literature still relies on 

parametric specifications that may under-represent nonlinearities and complex interactions among 

liquidity constraints, assets, income, and regional characteristics—patterns that are central to risk 

management applications. Meanwhile, credit and risk governance increasingly adopt machine 

learning to improve predictive accuracy, while requiring transparency and auditability of risk drivers; 

explainable machine learning has been proposed as a practical route to reconcile high-performing 

models with interpretable attribution in credit risk settings [4]. Beyond interpretability, reliable 

deployment of risk scores requires principled uncertainty handling and explicit risk control; recent 

conference work formalizes distribution-free risk guarantees via conformal methods that directly 

control expected loss-based risk measures rather than only point predictions [5]. Motivated by these 

developments, the study reframes the liquidity-constraint–financial-vulnerability relationship as an 

algorithmic household risk management problem: producing calibrated vulnerability probabilities, 

explaining key drivers, and supporting robust policy targeting under heterogeneous household and 

regional conditions. 

2. Related Work 

Recent household-finance studies document that limited short-term liquidity and access to 

emergency funds are central to household financial vulnerability, but the channels and measurement 

strategies vary across contexts. Evidence from consumption responses to predictable cash inflows 

suggests that many households behave as if they face binding liquidity constraints, with 

heterogeneous smoothing patterns even among borrowers holding revolving debt [6]. Policy-oriented 

work further shows that relaxing liquidity constraints through partial access to future public benefits 

can materially improve households’ ability to sustain consumption under unemployment shocks, 

highlighting the role of institutional liquidity backstops in mitigating fragility [7]. During the COVID-

19 period, survey-based research reports substantial prevalence of financially fragile households that 

struggle to cover mid-size emergency expenses, reinforcing the need to model vulnerability as a 

function of liquid buffers and shock exposure [8]. In parallel, the expansion of new consumer-credit 

products has raised fresh concerns for risk management: empirical evidence links household financial 

fragility to higher adoption and intensity of Buy Now, Pay Later (BNPL) usage, implying that fintech 

credit can both signal and amplify underlying vulnerability in consumer balance sheets [9]. 

Complementary work also shows that liquidity constraints and debt dynamics are intertwined for 

middle-class saving behavior, motivating models that jointly track liquid-asset positions, debt 

capacity, and shock absorption [10]. 

On the financial-risk-management side, the literature increasingly adopts machine learning to 
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improve prediction while addressing transparency, reliability, and deployment constraints. Banking 

applications emphasize Explainable Artificial Intelligence (XAI) to meet governance and regulatory 

expectations, often combining gradient-boosting models with SHapley Additive exPlanations (SHAP) 

to produce feature-attribution explanations that support credit decisioning [11]. Broader XAI 

frameworks for credit evaluation integrate model-agnostic explanation tools such as Local 

Interpretable Model-Agnostic Explanations (LIME) and SHAP to improve the interpretability of 

automated lending pipelines [12]. Methodologically, a key trend is the extension of deep learning to 

tabular, high-dimensional household-finance microdata; large-scale benchmarking in a major 

machine learning conference shows that Transformer-style architectures can be competitive for 

tabular prediction under standardized protocols, but performance depends strongly on training and 

tuning choices [13]. Because risk management relies on well-calibrated probabilities (not just 

classification accuracy), recent statistical work systematically compares probability-calibration 

methods for machine learning predictors [14], and operations/analytics research develops decision-

aware calibration objectives that align probabilistic outputs with downstream cost considerations [15]. 

Together, these strands motivate hybrid pipelines that combine causal-inference-aware learning, 

high-performance tabular prediction, explainability, and probability calibration for household 

financial vulnerability assessment. 

3. Methodology 

This study formulates household financial vulnerability assessment as an algorithmic financial risk 

management task with three tightly coupled modules: (i) vulnerability labeling and feature 

construction, (ii) predictive risk scoring with explainability, and (iii) causal machine learning and 

uncertainty-aware risk control. The Financial Vulnerability Index (FVI) is predicted as a calibrated 

probability, then decomposed into interpretable drivers using Shapley Additive Explanations (SHAP), 

and finally linked to liquidity constraints through heterogeneous causal effect estimation using 

Double Machine Learning (DML) and generalized random forests (GRF) . Gradient-boosted decision 

trees (GBDT) implemented via LightGBM serve as a core high-performance baseline for tabular 

microdata modeling . 

3.1. Problem Formulation and Variable Construction 

Outcome (Financial Vulnerability Index). Let 𝑌𝑖 ∈ {0,1}denote the binary Financial Vulnerability 

Index (FVI) for household 𝑖. A household is labeled vulnerable if liquid buffers cannot cover an 

unexpected expenditure proxy. Define liquid resources: 

 
liquid assetsnet cash-flow buffer

( ) , ,i i i i i i iLR Inc Cons LA LA Cash DemandDep      (1) 

and unexpected expenditure 𝑈𝐸𝑖(e.g., medical spending proxy). The label is constructed as: 

  .i i iY LR UE I  (2) 

This construction operationalizes vulnerability as “insufficient liquidity buffer under shock,” 

consistent with financial risk screening. 

Treatment (Liquidity Constraint). Let 𝐷𝑖 ∈ {0,1} denote liquidity constraint status. For risk-

management consistency, 𝐷𝑖is defined using credit access indicators (e.g., rejected loan applications, 

discouraged borrowing due to expected rejection, insufficient collateral/guarantees), yielding: 

 (credit access friction present).iD  I  (3) 

The feature vector 𝑋𝑖includes household demographics, balance-sheet variables (e.g., log⁡income, 
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log⁡ liquid/financial assets), employment and education, household size, risk attitudes, and 

regional/city-tier indicators. 

3.2. Predictive Risk Scoring with Gradient Boosting 

The predictive module estimates the vulnerability probability: 

 ˆ Pr( 1 ).i i ip Y X ∣  (4) 

A GBDT model represents 𝑝̂𝑖as an additive ensemble of 𝑇regression trees: 
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where 𝜂is the learning rate, ℎ𝑡(⋅)is a decision tree, and 𝜎(𝑧) = (1 + 𝑒−𝑧)−1is the logistic link. 

Training minimizes a regularized empirical risk: 
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with ℓ(⋅)as log-loss and Ω(⋅)penalizing model complexity. LightGBM is adopted for scalable 

GBDT training on high-dimensional tabular data and large sample sizes.  

Calibration for risk management. Since decision-making relies on well-calibrated probabilities, 

the raw model score 𝑝̂𝑖is recalibrated via a monotone mapping 𝑔(⋅)learned on a validation set: 

 ˆ( ),i ip g p  (7) 

where 𝑔can be fit using isotonic regression or logistic calibration. The calibrated 𝑝̃𝑖is treated as 

the operational vulnerability probability. 

3.3. Explainability via Shapley Additive Explanations 

To translate model outputs into interpretable risk drivers, SHAP expresses each prediction as an 

additive attribution model: 

 0

1

( ) ,
d

i ij

j

f X  


   (8) 

where 𝜙0is the base value and 𝜙𝑖𝑗is the contribution of feature 𝑗for household 𝑖. SHAP values are 

based on Shapley values from cooperative game theory: 
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with 𝐹the full feature set and 𝑓𝑆(⋅)the model restricted to subset 𝑆. This enables global ranking of 

risk factors (mean ∣ 𝜙𝑖𝑗 ∣) and local explanations for individual households, supporting auditability 

and policy interpretability.  

3.4. Causal Machine Learning: Effect of Liquidity Constraints 

Pure prediction does not identify the causal effect of liquidity constraints. The causal module 

estimates: 

 ( ) [ (1) (0) ],x Y Y X x   ∣E  (10) 
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where 𝑌(1)and 𝑌(0)denote potential outcomes under 𝐷 = 1and 𝐷 = 0. 

Double Machine Learning (DML). DML uses orthogonalization to reduce bias from high-

dimensional confounding. Let: 

 ( ) [ ], ( ) Pr( 1 ).m x Y X x e x D X x    ∣ ∣E  (11) 

Estimate 𝑚̂(⋅)and 𝑒̂(⋅)with flexible ML (e.g., GBDT), then form residuals: 

 ˆ ˆ( ), ( ).i i i i i iY Y m X D D e X     (12) 

An average treatment effect (ATE) can be estimated by regressing 𝑌̃𝑖on 𝐷̃𝑖: 

 
2

ˆ .
i i

i

i

i

D Y

D
 




 (13) 

This approach provides robust inference for low-dimensional causal parameters under complex 

nuisance models.  

Generalized Random Forests (GRF) for heterogeneity. To map heterogeneous effects, GRF 

estimates 𝜏(𝑥)via forest-based adaptive local weighting: 

 2

1
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n
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

   (14) 

where 𝛼𝑖(𝑥) ≥ 0are data-adaptive weights induced by the forest structure. This yields CATE 

estimates that can be aggregated by income quintile, city tier, and region to identify vulnerable 

subpopulations most affected by liquidity constraints.  

3.5. Uncertainty-Aware Risk Control (Conformal Risk Sets) 

For operational robustness, distribution-free uncertainty control is added via conformal prediction. 

Given calibrated probabilities 𝑝̃𝑖, a nonconformity score can be defined as: 

 1 (for 1) or (for 0),i i i i i is p Y s p Y      (15) 

and a quantile threshold 𝑞1−𝛼is computed on a calibration set. A household is flagged as “high-

risk under uncertainty control” when the conformal criterion indicates that vulnerability cannot be 

ruled out at confidence level 1 − 𝛼. This supports conservative screening under model and sampling 

uncertainty. 

4. Experiments and Results Analysis 

4.1. Experimental Setup 

Household-level microdata were collected from nationally representative household finance 

surveys, with variables covering balance-sheet positions (income and financial assets), demographic 

characteristics (age, education, household size, employment), and regional and city-tier attributes. 

Financial Vulnerability Index (FVI) was constructed as a binary risk label indicating whether liquid 

buffers are insufficient to absorb unexpected expenditure shocks. Liquidity constraint status was 

identified based on credit access frictions and related indicators, and was included as a key risk driver 

within the feature set. 

To reflect realistic deployment settings, a temporal evaluation protocol was adopted: earlier-wave 

observations were used for model training, while a later-wave sample was used as an out-of-time test 
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set. Two representative tabular models were benchmarked: (i) Logistic Regression as an interpretable 

baseline and (ii) Gradient Boosting as a non-linear high-capacity learner. Model performance was 

evaluated using threshold-free discrimination metrics (Area Under the Receiver Operating 

Characteristic Curve, AUC), tail-relevant ranking metrics (Average Precision, AP), and probabilistic 

accuracy (Brier score). In addition, an operational screening rule was examined by flagging 

households in the top 20% of predicted risk to mimic a risk-management prioritization scenario. 

4.2. Predictive Performance and Probability Quality 

Figure 1 reports ROC curves on the temporal test set. Logistic Regression achieves an AUC of 

0.714, while Gradient Boosting attains an AUC of 0.695, indicating that both models provide 

meaningful separation between vulnerable and non-vulnerable households, with the linear baseline 

slightly stronger in overall discrimination. Beyond AUC, risk management depends on probability 

quality rather than only ranking. Figure 2 presents the reliability diagram of the selected operational 

model: the curve tracks the 45-degree reference line with moderate deviations, suggesting that 

predicted probabilities are broadly aligned with realized vulnerability frequencies and are usable for 

probability-based screening and stress testing. 

 

Figure 1: ROC Curves 

 

Figure 2: Calibration Reliability 

Figure 3 visualizes the distribution of predicted vulnerability probabilities by true class. The 

vulnerable group is shifted toward higher predicted probabilities, while the non-vulnerable group 

concentrates more on the low-probability region, consistent with effective model separation. Under 

the operational threshold that flags the top 20% risk scores (Figure 4), the screening policy yields 
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precision = 0.625 and recall = 0.348 on the temporal test set. This pattern is typical of conservative 

risk triage: the flagged set contains a high share of truly vulnerable households (high precision), while 

a portion of vulnerable households remains outside the top-risk segment (moderate recall). Such a 

design is suitable for constrained intervention capacity (e.g., targeted counseling or liquidity support), 

where minimizing false alarms is prioritized. 

 

Figure 3: RiskScore Distributions 

 

Figure 4: Confusion Matrix 

4.3. Interpretability and Heterogeneity of Liquidity-Constraint Risk 

To ensure that the risk model supports actionable financial risk management, global 

interpretability was examined. Figure 5 ranks the most influential predictors in the Gradient Boosting 

model. Financial assets and income-related variables dominate the importance ranking, indicating 

that balance-sheet buffers are primary determinants of vulnerability risk. Liquidity constraint status 

is among the top drivers, reinforcing its relevance even after conditioning on income, assets, and 

household characteristics. Education years and household size also contribute materially, reflecting 

long-term human-capital differences and consumption burden effects. 
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Figure 5: Global Feature Importance 

Heterogeneity analysis further explores how liquidity constraints amplify predicted vulnerability 

across subpopulations. Figure 6 reports the mean change in predicted risk when switching liquidity 

constraint status from unconstrained to constrained, aggregated by income quintile and city tier. The 

amplification effect is largest in the lowest income quintile and gradually attenuates as income 

increases, indicating that liquidity constraints interact strongly with limited financial buffers. Across 

city tiers, the effect differences are present but smaller in magnitude than income gradients; lower-

tier cities exhibit slightly higher amplification in several income groups, consistent with weaker local 

financial access and thinner informal risk-sharing networks. These results suggest that algorithmic 

targeting of liquidity-relief policies should prioritize low-income households and pay attention to 

structural constraints in less-developed city tiers. 

 

Figure 6: Heterogeneity Heatmap CATE 

5. Conclusions 

This study examines household financial vulnerability from a financial risk management 

perspective and evaluates how liquidity constraints amplify the probability of entering financial 

distress. Using household-level microdata with comprehensive balance-sheet, demographic, and 

regional attributes, the vulnerability label is constructed based on whether liquid buffers are sufficient 

to absorb unexpected expenditure shocks. Empirical results from out-of-time testing indicate that 

tabular machine learning models can effectively discriminate vulnerable from non-vulnerable 
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households, while probability calibration supports the operational use of predicted risk scores in 

screening and monitoring scenarios. 

The results consistently indicate that liquidity constraints are a material risk driver after controlling 

for income, financial assets, household size, education, employment, and location characteristics. 

Interpretation analysis confirms that buffer-related variables (income and assets) dominate risk 

formation, but liquidity constraints remain among the most influential predictors, implying that access 

to short-term funding and credit smoothing is directly linked to household fragility. Heterogeneity 

patterns further show that the amplification effect of liquidity constraints is strongest among low-

income households and remains non-negligible across city tiers, suggesting that constrained 

households with limited buffers face disproportionately higher vulnerability risk. 

These findings provide clear implications for household financial risk governance and inclusive-

finance policy. Risk-based targeting strategies should prioritize liquidity relief and emergency buffer-

building interventions for low-income groups, and strengthen accessible credit and contingency 

support mechanisms in areas where liquidity constraints are most binding. More broadly, embedding 

explainable, calibrated machine learning into household risk monitoring can improve the precision of 

policy targeting, enhance the efficiency of limited intervention resources, and contribute to more 

resilient household balance sheets and a more stable financial system. 
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