
A Transferable Retrieval-Augmented Generation 

Framework for Vertical-Domain Question Answering: 

From Academic Competitions to Cultural Tourism and 

Financial Technology 

Yongye Huang  

School of Mathematics and Statistics, Hanshan Normal University, Chaozhou, Guangdong, China 

hiiy132321@163.com  

Keywords: Retrieval-Augmented Generation; Transfer Learning; Vertical-Domain Question 

Answering; Hybrid Retrieval; Domain Routing; Evidence Canonicalization; Citation 

Consistency 

Abstract: Vertical-domain question answering often relies on domain-specific retrieval 

pipelines and prompt designs, which limits robustness when transferred across heterogeneous 

domains. This paper presents a transferable Retrieval-Augmented Generation framework, 

where Retrieval-Augmented Generation (RAG) integrates external knowledge retrieval with 

large language model generation for grounded answering. The proposed framework targets 

cross-domain transfer from academic competition problem solving to cultural tourism 

services and financial technology applications by unifying query normalization, hybrid 

retrieval, and citation-consistent generation. Specifically, a domain router predicts an 

inference policy that adaptively configures sparse retrieval, dense retrieval, and neural re-

ranking, while a query rewriting module converts user questions into a structured canonical 

form to reduce domain shift. Retrieved evidence is further standardized through evidence 

canonicalization to provide a consistent input schema for downstream generation. To 

improve reliability, the generation module incorporates evidence alignment and post-

generation verification to reduce unsupported statements and enhance citation correctness. A 

transfer-oriented training strategy is introduced by combining contrastive retrieval learning, 

lightweight domain adaptation, and domain-invariant regularization, enabling effective 

adaptation under limited target-domain supervision. Experiments across three representative 

scenarios demonstrate that the framework improves answer accuracy, evidence recall, and 

citation consistency under both in-domain evaluation and few-shot transfer settings, 

indicating strong transferability and practical potential for deployable vertical-domain 

question answering systems.

1. Introduction  

Large language models have recently become a dominant paradigm for question answering due to 

strong instruction-following and natural language generation capabilities. However, purely 

parametric answering remains fragile in knowledge-intensive and high-stakes settings because 
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outputs can be outdated or unsupported by verifiable evidence. Retrieval-Augmented Generation 

(RAG), where Retrieval-Augmented Generation (RAG) integrates external knowledge retrieval with 

conditional generation, addresses this limitation by grounding answers in retrieved documents and 

improving factual reliability [1]. Subsequent research has further shown that retrieval can function as 

scalable external memory: retrieval-enhanced language models trained against very large corpora can 

improve performance and robustness without relying solely on parameter growth [3]. In addition, 

retrieval-augmented models have demonstrated strong few-shot behavior on knowledge-centric tasks, 

indicating that retrieval can reduce dependence on heavy domain-specific fine-tuning and support 

data-efficient adaptation [2]. 

Despite these advances, vertical-domain question answering still faces a transfer bottleneck when 

moving across heterogeneous domains such as academic competitions (multi-step reasoning and 

derivations), cultural tourism (time-sensitive factual queries and constrained recommendations), and 

financial technology (policy- and product-grounded explanations with strict traceability). Effective 

transfer requires not only retrieving relevant evidence but also deciding when retrieval is needed, how 

user questions should be rewritten for retrieval, and how to ensure that each generated statement is 

supported by the retrieved documents. Empirical findings suggest that retrieval augmentation does 

not automatically guarantee grounded long-form generation, motivating explicit evidence alignment 

and post-generation verification to reduce unsupported statements [4]. Complementary work in 

conversational settings further indicates that retrieval decisions and retrieval-oriented rewriting are 

critical for improving passage relevance and response quality, particularly under contextual and 

multi-turn queries [5]. These observations motivate a transferable RAG framework that explicitly 

models domain shift at the levels of query normalization, hybrid retrieval configuration, and citation-

consistent generation, enabling a unified algorithmic pipeline to transfer from academic problem 

solving to cultural tourism services and financial technology applications. 

2. Related work 

Retrieval-augmented question answering has evolved from “retrieve-then-generate” pipelines into 

tightly coupled architectures that explicitly fuse evidence across multiple passages. Fusion-in-

Decoder (FiD) shows that scaling the number of retrieved passages and performing sequence-to-

sequence fusion can substantially improve open-domain question answering, establishing retrieval 

depth and evidence aggregation as key levers for system accuracy and robustness [6]. Meanwhile, 

retrieval quality itself has progressed beyond single-vector dense retrievers: ColBERTv2 

demonstrates lightweight late interaction with strong effectiveness and improved storage efficiency 

across multiple benchmarks, helping retrieval generalize beyond the training domain [7]. To 

systematically evaluate out-of-distribution retrieval robustness, BEIR provides a heterogeneous suite 

of datasets/tasks for zero-shot retrieval testing, highlighting that cross-domain generalization remains 

a central challenge [8]. Complementary to dense and late-interaction retrieval, SPLADE introduces 

learned sparse representations that preserve lexical matching advantages while improving first-stage 

ranking effectiveness, making hybrid retrieval stacks (sparse + dense/late-interaction + reranking) a 

practical direction for domain QA deployments [10].  

In knowledge-intensive question answering, unified benchmarks and document-grounded datasets 

have become important for measuring transferability across tasks and corpora. KILT unifies multiple 

knowledge-intensive tasks under a shared Wikipedia snapshot, enabling reusable infrastructure 

(retriever, index, generator) across tasks and supporting more comparable evaluation [9]. For 

academic and vertical-domain QA over long documents, Qasper provides evidence-anchored 

information-seeking questions over research papers, emphasizing the difficulty of document-level 

reasoning and citation-style grounding [11]. As retrieval-augmented generation (RAG) systems enter 
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real applications, evaluation and reproducibility toolchains have gained attention: BERGEN 

standardizes end-to-end RAG benchmarking across retrievers/rerankers/large language models 

(LLMs), and RAGAS proposes automated evaluation signals for RAG pipelines to reduce reliance 

on costly human judgment [12][13]. In parallel, explicit citation and attribution capabilities are being 

strengthened: Efficient Citer trains models to produce answers with citations for better verification, 

while recent work on post-hoc attribution for long-document QA studies finer-grained mapping from 

generated claims back to supporting source spans—both aligning closely with trust requirements in 

cultural tourism and fintech QA [14][15]. 

3. Methods  

3.1. Task Formulation and Notation 

Let 𝑑 ∈ {1,… , 𝐷}denote a vertical domain (academic competition, cultural tourism, financial 

technology). Each domain provides a corpus 𝒞𝑑 = {(𝑢𝑗 , 𝑡𝑗)}𝑗=1
𝑁𝑑 , where 𝑢𝑗is a document identifier and 

𝑡𝑗is the document text (optionally with metadata such as time, source, locale). Given a user query 

𝑥and optional dialogue history ℎ, the system outputs an answer 𝑦and a set of citations 𝑐that point to 

retrieved evidence spans: 

 start end

1( , ) ( , ), {( , , )} .cK

k k k kx h y c c u   (1) 

Retrieval-Augmented Generation is modeled as retrieving evidence 𝐸 = {𝑒𝑖}𝑖=1
𝐾 from 𝒞𝑑 and 

generating 𝑦conditioned on (𝑥, ℎ, 𝐸): 

 ( , , ), ( , , ).dE R x h y G x h E    ∣ ∣  (2) 

The transfer goal is to keep a shared backbone (𝜃0, 𝜙0)and adapt to new domains with minimal 

additional supervision by learning lightweight domain modules and routing policies. 

The overall process is shown in Figure 1. 

 

Figure.1: Overall pipeline (flowchart). 

3.2. Domain Router and Policy Selection 

A domain router predicts a domain mixture and an inference policy controlling retrieval fusion, 

top- 𝐾 , reranking, and generation constraints. Let 𝑧 = 𝑓enc(𝑥, ℎ) ∈ ℝ𝑚 be an encoded query 

representation. The router outputs: 

 ( , ) softmax( ) ,dd x h Wz b  ∣  (3) 

and then maps this distribution to a policy vector Π(𝑥, ℎ) that parameterizes retrieval and 

generation: 
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D

d
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x h d x h


   ∣  (4) 

where each Π𝑑contains hyperparameters such as 𝜆𝑑 (sparse–dense fusion weight), 𝐾𝑑 (retrieval 

depth), and 𝜂𝑑(verification strictness). A concrete example is: 

 ( , ) ( , ) , ( , ) [ ( , ) .]d d

d d

x h d x h K x h d x h K     ∣ ∣  (5) 

Parameter-efficient domain adaptation. The generator uses a shared backbone 𝜙0with domain 

adapters 𝐴𝑑. For a transformer layer weight matrix 𝑊 ∈ ℝ𝑝×𝑞, a low-rank adapter can be expressed 

as: 

 0 , , , , min( , ),p r r q

d d d d d d dW W W W B A B A r p q         (6) 

so that only (𝐴𝑑, 𝐵𝑑)is updated per domain while 𝑊0stays shared. 

3.3. Query Normalization and Canonical Form 

Vertical queries differ in intent and constraint structure (proof/derivation vs itinerary constraints 

vs compliance clauses). A query normalizer produces a canonical representation 𝑥̃consisting of intent, 

entities, and constraints: 

 ( , , ( , )).x g x h d x h  ∣  (7) 

The canonical form is treated as a tuple: 

 ( , , , , ),x   (8) 

where 𝜄is intent, ℰentities, 𝒦constraints (budget, time window, eligibility, etc.), 𝒯temporal hints, 

and ℒlocale/jurisdiction. For sparse retrieval, the canonical tuple is rendered into a lexical query 𝑞sp; 

for dense retrieval it is encoded directly: 

 sp Render( ), ( ).qq x e f x   (9) 

3.4. Hybrid Retrieval with Router-Conditioned Fusion 

Two complementary retrievers are used. 

Sparse retrieval. A BM25-style sparse score for document 𝑡is denoted 𝑠sp(𝑡 ∣ 𝑞sp). 

Dense retrieval. A dense score uses cosine similarity (or dot-product) between query and document 

embeddings: 

  de ( ) cos , , ( ).
q t

q t t

q t

e e
s t x e e e f t

e e
  ∣  (10) 

Router-conditioned score fusion. The fused score is: 

 de sp sp
ˆ ˆ( , ) ( , ) ( ) (1 ( , )) ( ),s t x h x h s t x x h s t q   ∣ ∣ ∣  (11) 

where 𝑠̂ denotes min–max (or z-score) normalized scores across candidates to avoid scale 

mismatch. 

Rank fusion alternative (robust to scaling). Reciprocal Rank Fusion can also be used: 

 rrf

{sp,de} 0

( , )
( ) ,

rank ( )

m

m m

w x h
s t

k t




  (12) 
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where 𝑤𝑚(𝑥, ℎ) is policy-controlled and 𝑘0 is a small constant (e.g., 60). The top-𝐾(𝑥, ℎ) 
documents form a candidate pool 𝑃. 

3.5. Reranking, Irrelevance Filtering, and Evidence Canonicalization 

Cross-encoder reranking. A reranker 𝑟𝜔refines the candidate list using a cross-encoder score: 

 re ( , ) ([ ; ;sep; ]),s t x h r x h t∣  (13) 

and the final retrieval score can be: 

 final re( ) ( | , ) (1 ) ( | , ),s t s t x h s t x h     (14) 

with 𝛼determined by Π(𝑥, ℎ). 
Irrelevance filtering (claim-aware). Given a draft claim set 𝒴(from an initial short decode) and a 

candidate passage 𝑡, a relevance probability is estimated: 

  ( ) Pr Support( ( , )) .t t x y    (15) 

Only passages with 𝜌(𝑡) ≥ 𝛿(𝑥, ℎ)are retained: 

 { : ( ) ( , )}.E t P t x h     (16) 

Evidence canonicalization. Each retained document is chunked into spans and standardized: 

 ˆ Canon( ) (id,title,source,time,span ,entities ).i i i ie t   (17) 

Deduplication uses embedding similarity between spans: 

   ˆKeep( ) max cos , , (span ),i j i i j i ie v v v f    (18) 

so that redundant near-duplicate spans are removed before generation. 

3.6. Citation-Controlled Generation and Claim–Evidence Alignment 

The generator produces an answer token sequence 𝑦 = (𝑦1, … , 𝑦𝑇)conditioned on canonical 

evidence 𝐸̂: 

 
1

ˆ ˆ( | , , ) ( | , , , ).
T

t t

t

p y x h E p y y x h E  



  (19) 

Attribution distribution over evidence. At each time step (or at sentence boundaries), an evidence-

attention distribution is computed: 

 softmax ,t E

t

Q K
a

d

 
  

 

T

 (20) 

where 𝑄𝑡is the decoder query vector and 𝐾𝐸are key vectors for evidence spans. A citation index is 

then selected by: 

 ( )arg max .i

t i tc a  (21) 

Citation-consistency objective (span-level). Let ent(𝑒𝑖 , 𝑠) ∈ [0,1] denote an 

entailment/consistency score between evidence span 𝑒𝑖and generated sentence 𝑠. For sentences {𝑠𝑗}in 

the answer, the citation loss is: 
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cite ( )

ˆ(1 ent( , )),c j j

j

e s   (22) 

where 𝑐(𝑗)is the cited evidence index for sentence 𝑠𝑗. This discourages citations that do not support 

the corresponding claim. 

Constrained decoding (policy-dependent). For high-stakes settings (e.g., compliance QA), 

generation is constrained to avoid unsupported assertions by penalizing tokens that reduce evidence 

alignment: 

 unalignedlog ( ) log ( ) ( , ) ( ),t t tp y p y x h y      (23) 

where 𝜂(𝑥, ℎ)is stricter when 𝜋(FinTech ∣ 𝑥, ℎ)is large. 

3.7. Verification and Final Answer Selection 

After generating a draft (𝑦(0), 𝑐(0)), a verifier evaluates each sentence for support: 

 ˆmax ent( , ),j i K i je s   (24) 

and defines the supported-sentence indicator: 

 ( ( , )).j j x h    (25) 

Unsupported sentences are revised by either (i) re-retrieval with a targeted query built from the 

sentence, or (ii) deletion/softening. A compact selection rule is: 

 
( , )

ˆ( , ) arg max [log ( | , , ) (1 )],jy c
j

y c p y x h E  

 


    (26) 

where ℬis a small set of candidate revisions and 𝛽is a penalty weight. 

3.8. Training Objectives for Transferability 

Training optimizes retrieval, routing, and generation jointly (or in stages). A typical overall 

objective is: 

 gen 1 ret 2 route 3 cite 4 inv .         (27) 

(1) Generation loss. 

 * *

gen

1

ˆlog ( , , , ).
T

t t

t

p y y x h E 



  ∣  (28) 

(2) Retrieval contrastive loss (InfoNCE). 

 ret

exp(sin( , ) / )
log .

exp(sin( , ) / ) exp(sin( , ) / )

q t

q qt t
t

e e

e e e e



 



 



 


 (29) 

(3) Router supervision (policy learning). If an oracle policy Π*is derived from validation gains, 

the router can be trained by: 

 *

route ( )log? ( , ).
d

d d x h   ∣  (30) 

(4) Domain-invariant regularization (reducing domain shift). A discriminator 𝐷𝜈predicts domain 

from embeddings, while the encoder learns domain-invariant features via a minimax objective: 
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  ( , )min max log? ( ( , )) .x h

d

d D d f x h   

 
 
 
1 ∣  (31) 

This encourages 𝑓𝜃to retain task-relevant information while removing domain-specific artifacts. 

4. Experiments and Results 

4.1. Experimental setup 

To evaluate cross-domain transferability for vertical-domain question answering, three 

representative scenarios were constructed: academic competition QA, cultural tourism QA, and 

financial technology (FinTech) QA. Domain corpora were collected from publicly accessible 

materials and domain repositories, covering (i) problem statements and solution write-ups for 

academic competition tasks, (ii) point-of-interest descriptions, transportation guidance, 

ticketing/visiting rules, and itinerary-related texts for cultural tourism, and (iii) product descriptions, 

risk disclosures, compliance clauses, and policy-oriented documents for FinTech. Each query was 

paired with a reference answer and annotated supporting evidence spans to enable both answer-

quality evaluation and citation-level groundedness assessment. Two evaluation settings were used: 

in-domain (training and testing within the same domain) and few-shot transfer (limited labeled 

samples in the target domain with the remaining supervision coming from transferable components). 

Baselines include Vanilla RAG (single retrieval strategy with standard generation), Hybrid RAG 

(sparse+dense retrieval with reranking), and the proposed T-RAG (domain router + query 

normalization + hybrid retrieval + evidence canonicalization + citation-consistent verification). The 

main end-to-end metric is F1 (%) for question answering, complemented by retrieval Recall@K and 

evidence-grounding indicators including Citation Correctness, Supported Sentence Ratio, and a 

normalized Faithfulness Score. All methods use identical corpora and query splits for fairness. 

4.2. End-to-End QA Performance under In-Domain and Transfer Settings 

 

Figure 2: End-to-end F1 across domains (In-domain vs Few-shot transfer) 

Figure 2 reports end-to-end F1 across the three domains under both in-domain and few-shot 

transfer settings. T-RAG achieves the strongest performance consistently, indicating that explicit 
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routing and normalization mitigate domain shift more effectively than a fixed retrieval–generation 

pipeline. In the in-domain setting, T-RAG reaches approximately 85.9% (Academic Competition), 

83.2% (Cultural Tourism), and 81.0% (FinTech), outperforming Hybrid RAG (around 81.3%, 78.1%, 

76.4%) and Vanilla RAG (around 78.5%, 75.2%, 73.1%). 

Under few-shot transfer, all methods exhibit a performance drop due to limited target supervision, 

yet T-RAG maintains a notably smaller degradation. T-RAG remains around 80.7% (Academic 

Competition), 77.5% (Cultural Tourism), and 75.6% (FinTech), while Hybrid RAG and Vanilla RAG 

decline more substantially. This pattern supports the design assumption that cross-domain robustness 

requires more than stronger retrieval alone: domain-conditioned retrieval fusion, query normalization, 

and citation-consistent generation constraints collectively improve generalization when domain 

distributions differ. 

4.3. Retrieval Quality and Evidence Coverage 

Figure 3 compares retrieval Recall@K for the three systems, averaged across domains. Hybrid 

RAG improves over Vanilla RAG due to combined sparse and dense retrieval signals, while T-RAG 

further increases recall across all K values, especially at moderate K where real deployments 

commonly operate (e.g., K=10–20). At K=10, T-RAG achieves roughly 0.82 recall, compared with 

about 0.76 for Hybrid RAG and 0.70 for Vanilla RAG. At K=50, T-RAG approaches roughly 0.92, 

reflecting stronger evidence coverage for downstream generation. 

The gains align with the proposed design: router-conditioned score fusion adapts retrieval 

weighting to the query’s domain and intent, improving recall without blindly increasing K. Improved 

recall at practical K reduces failure cases where the generator is forced to answer from partial or off-

target evidence, which is particularly critical for long-form reasoning in academic competition QA 

and for clause-specific queries in FinTech QA. 

 

Figure 3: Retrieval RecallAtK 

4.4. Citation Correctness and Groundedness in FinTech QA 

FinTech QA requires strict traceability, making groundedness metrics as important as answer-level 

scores. Figure 4 reports three grounding-related indicators in the FinTech setting. T-RAG achieves 

the highest Citation Correctness (approximately 86.9%) and Supported Sentence Ratio 

(approximately 88.3%), surpassing Hybrid RAG (about 78.6% and 81.2%) and Vanilla RAG (about 
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72.1% and 76.4%). The Faithfulness Score shows a consistent improvement as well (T-RAG around 

91%, compared to ~85% for Hybrid RAG and ~81% for Vanilla RAG after normalization to 

percentage scale). 

These improvements are consistent with the architecture’s explicit controls: evidence 

canonicalization reduces citation ambiguity by stabilizing chunk boundaries and metadata, while 

verification discourages unsupported statements. Importantly, the gains are not limited to “more 

retrieval”; instead, they indicate that retrieval must be paired with evidence-to-claim alignment 

mechanisms to reliably satisfy compliance-style QA requirements. 

 

Figure 4: Citation Groundedness 

4.5. Ablation Study 

To quantify the contribution of each component, Figure 5 presents an ablation study averaged 

across the three domains. The full T-RAG configuration yields about 82.9% F1. Removing the 

domain router reduces performance to about 80.1%, showing that adaptive policy selection (retrieval 

fusion and generation style control) is a major driver of transfer robustness. Eliminating query 

rewriting/normalization leads to about 79.4%, indicating that canonical query structure improves 

cross-domain retrieval recall and reduces intent ambiguity. 

Two other modules also contribute measurably. Replacing hybrid retrieval with dense-only 

retrieval drops to about 78.2%, suggesting that lexical anchoring remains important in domains with 

exact terminology (especially policy and product clauses). Removing evidence canonicalization 

yields about 79.0%, consistent with evidence formatting being valuable for stable citation mapping. 

Finally, removing verification decreases to about 78.6%, confirming that post-generation consistency 

checking improves reliability beyond retrieval and prompting alone. 
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Figure 5: Ablation Study 

4.6. Efficiency–Performance Trade-off 

Practical vertical QA deployment often requires low-cost adaptation rather than full fine-tuning. 

Figure 6 compares average F1 versus trainable parameters (log scale). Prompt-only adaptation 

achieves around 79.2%, while adapter-based tuning (e.g., QLoRA-style parameter-efficient updates) 

reaches about 81.6% with a small trainable footprint. Adding router-related adaptation increases to 

about 82.9% at modest parameter growth, approaching the performance of full fine-tuning (~83.3%) 

with substantially fewer trainable parameters. 

This result supports the framework’s intended design for transfer: most benefits are obtained by a 

shared backbone plus lightweight specialization (adapters and router), making cross-domain 

expansion feasible without costly full-model retraining for each vertical. 

 

Figure 6: Efficiency Params vs F1 
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4.7. Router Behavior and Intent-Sensitive Domain Mixing 

Figure 7 visualizes the router’s predicted domain mixture across five common intent categories. 

Derivation/proof queries are primarily routed to the academic domain (about 72%), whereas fact 

lookup and recommendation queries allocate higher weights to cultural tourism (approximately 55% 

and 70%, respectively). Policy compliance queries heavily route to FinTech (about 66%), and risk 

explanation similarly favors FinTech (about 72%). 

This behavior is consistent with the framework’s objective of intent-aware configuration: domain 

mixing is not forced into a single label, enabling queries with overlapping semantics to benefit from 

different retrieval and generation policies. Such routing contributes to stable performance under 

transfer by selecting retrieval fusion weights and generation constraints that match the evidence style 

of the target domain. 

 

Figure 7:  Router Heatmap 

5. Conclusion and Outlook 

This paper introduces a transferable Retrieval-Augmented Generation framework for vertical-

domain question answering that targets robust adaptation from academic competition problem 

solving to cultural tourism services and financial technology applications. The proposed design 

integrates domain-aware routing, query normalization, hybrid retrieval with adaptive score fusion, 

evidence canonicalization, and citation-consistent generation with verification, enabling a unified 

pipeline to handle heterogeneous corpora and intent distributions while maintaining grounded outputs. 

Experimental results across the three domains demonstrate consistent improvements in end-to-end 

answer quality, retrieval evidence coverage, and citation correctness under both in-domain evaluation 

and few-shot transfer settings. The ablation analysis further confirms that routing, query rewriting, 

evidence canonicalization, and verification each contribute meaningfully to transfer robustness, while 

efficiency results indicate that parameter-efficient adaptation can achieve competitive performance 

without full model fine-tuning. 

Future work can extend the framework toward broader vertical coverage and stronger reliability 

guarantees by incorporating more fine-grained temporal validity modeling for tourism information, 
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stricter compliance-aware decoding constraints for FinTech, and scalable continual learning 

strategies that update retrieval indexes and adapters without degrading previously learned domains. 

In addition, integrating user feedback signals and domain-specific evaluation protocols for risk-

sensitive scenarios may further improve trustworthiness and deployment readiness for real-world 

vertical-domain question answering systems. 
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