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Abstract: Vertical-domain question answering often relies on domain-specific retrieval
pipelines and prompt designs, which limits robustness when transferred across heterogeneous
domains. This paper presents a transferable Retrieval-Augmented Generation framework,
where Retrieval-Augmented Generation (RAG) integrates external knowledge retrieval with
large language model generation for grounded answering. The proposed framework targets
cross-domain transfer from academic competition problem solving to cultural tourism
services and financial technology applications by unifying query normalization, hybrid
retrieval, and citation-consistent generation. Specifically, a domain router predicts an
inference policy that adaptively configures sparse retrieval, dense retrieval, and neural re-
ranking, while a query rewriting module converts user questions into a structured canonical
form to reduce domain shift. Retrieved evidence is further standardized through evidence
canonicalization to provide a consistent input schema for downstream generation. To
improve reliability, the generation module incorporates evidence alignment and post-
generation verification to reduce unsupported statements and enhance citation correctness. A
transfer-oriented training strategy is introduced by combining contrastive retrieval learning,
lightweight domain adaptation, and domain-invariant regularization, enabling effective
adaptation under limited target-domain supervision. Experiments across three representative
scenarios demonstrate that the framework improves answer accuracy, evidence recall, and
citation consistency under both in-domain evaluation and few-shot transfer settings,
indicating strong transferability and practical potential for deployable vertical-domain
guestion answering systems.

1. Introduction

Large language models have recently become a dominant paradigm for question answering due to
strong instruction-following and natural language generation capabilities. However, purely
parametric answering remains fragile in knowledge-intensive and high-stakes settings because
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outputs can be outdated or unsupported by verifiable evidence. Retrieval-Augmented Generation
(RAG), where Retrieval-Augmented Generation (RAG) integrates external knowledge retrieval with
conditional generation, addresses this limitation by grounding answers in retrieved documents and
improving factual reliability [1]. Subsequent research has further shown that retrieval can function as
scalable external memory: retrieval-enhanced language models trained against very large corpora can
improve performance and robustness without relying solely on parameter growth [3]. In addition,
retrieval-augmented models have demonstrated strong few-shot behavior on knowledge-centric tasks,
indicating that retrieval can reduce dependence on heavy domain-specific fine-tuning and support
data-efficient adaptation [2].

Despite these advances, vertical-domain question answering still faces a transfer bottleneck when
moving across heterogeneous domains such as academic competitions (multi-step reasoning and
derivations), cultural tourism (time-sensitive factual queries and constrained recommendations), and
financial technology (policy- and product-grounded explanations with strict traceability). Effective
transfer requires not only retrieving relevant evidence but also deciding when retrieval is needed, how
user questions should be rewritten for retrieval, and how to ensure that each generated statement is
supported by the retrieved documents. Empirical findings suggest that retrieval augmentation does
not automatically guarantee grounded long-form generation, motivating explicit evidence alignment
and post-generation verification to reduce unsupported statements [4]. Complementary work in
conversational settings further indicates that retrieval decisions and retrieval-oriented rewriting are
critical for improving passage relevance and response quality, particularly under contextual and
multi-turn queries [5]. These observations motivate a transferable RAG framework that explicitly
models domain shift at the levels of query normalization, hybrid retrieval configuration, and citation-
consistent generation, enabling a unified algorithmic pipeline to transfer from academic problem
solving to cultural tourism services and financial technology applications.

2. Related work

Retrieval-augmented question answering has evolved from “retrieve-then-generate” pipelines into
tightly coupled architectures that explicitly fuse evidence across multiple passages. Fusion-in-
Decoder (FiD) shows that scaling the number of retrieved passages and performing sequence-to-
sequence fusion can substantially improve open-domain question answering, establishing retrieval
depth and evidence aggregation as key levers for system accuracy and robustness [6]. Meanwhile,
retrieval quality itself has progressed beyond single-vector dense retrievers: CoIBERTV2
demonstrates lightweight late interaction with strong effectiveness and improved storage efficiency
across multiple benchmarks, helping retrieval generalize beyond the training domain [7]. To
systematically evaluate out-of-distribution retrieval robustness, BEIR provides a heterogeneous suite
of datasets/tasks for zero-shot retrieval testing, highlighting that cross-domain generalization remains
a central challenge [8]. Complementary to dense and late-interaction retrieval, SPLADE introduces
learned sparse representations that preserve lexical matching advantages while improving first-stage
ranking effectiveness, making hybrid retrieval stacks (sparse + dense/late-interaction + reranking) a
practical direction for domain QA deployments [10].

In knowledge-intensive question answering, unified benchmarks and document-grounded datasets
have become important for measuring transferability across tasks and corpora. KILT unifies multiple
knowledge-intensive tasks under a shared Wikipedia snapshot, enabling reusable infrastructure
(retriever, index, generator) across tasks and supporting more comparable evaluation [9]. For
academic and vertical-domain QA over long documents, Qasper provides evidence-anchored
information-seeking questions over research papers, emphasizing the difficulty of document-level
reasoning and citation-style grounding [11]. As retrieval-augmented generation (RAG) systems enter
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real applications, evaluation and reproducibility toolchains have gained attention: BERGEN
standardizes end-to-end RAG benchmarking across retrievers/rerankers/large language models
(LLMs), and RAGAS proposes automated evaluation signals for RAG pipelines to reduce reliance
on costly human judgment [12][13]. In parallel, explicit citation and attribution capabilities are being
strengthened: Efficient Citer trains models to produce answers with citations for better verification,
while recent work on post-hoc attribution for long-document QA studies finer-grained mapping from
generated claims back to supporting source spans—»both aligning closely with trust requirements in
cultural tourism and fintech QA [14][15].

3. Methods
3.1. Task Formulation and Notation

Let d € {1, ..., D}denote a vertical domain (academic competition, cultural tourism, financial
technology). Each domain provides a corpus C; = {(u;, tj)}?’jl, where u;is a document identifier and
tjis the document text (optionally with metadata such as time, source, locale). Given a user query

xand optional dialogue history h, the system outputs an answer yand a set of citations cthat point to
retrieved evidence spans:

(0= (y,0) e ={(U,, 67 (DR 1)

Retrieval-Augmented Generation is modeled as retrieving evidence E = {e;}¥ , from ¢, and
generating yconditioned on (x v E):

E~R,(I xh,C),y~G,(l x,h,E). 2

The transfer goal is to keep a shared backbone (6, ¢,)and adapt to new domains with minimal
additional supervision by learning lightweight domain modules and routing policies.
The overall process is shown in Figure 1.

Domain Router Hybrid Retrieval
n(d|x,h) — Policy —P»| Norr?:lf;;yation —» (Sparse + Dense) —
w*(x.h) Candidate pool P

Claim—Evidence Citation-Controlled E.Vld?nc? Reranking +
. : . Canonicalization — =
Verification — Generation — draft — E (spans + <— Irrelevance Filtering
final y, ¢ y0, citations c0 P — EBvidence E
metadata)

Figure.1: Overall pipeline (flowchart).
3.2. Domain Router and Policy Selection

A domain router predicts a domain mixture and an inference policy controlling retrieval fusion,
top- K, reranking, and generation constraints. Let z = f,,.(x,h) € R™ be an encoded query
representation. The router outputs:

z(d| x,h) = softmax(Wz +b),, 3)

and then maps this distribution to a policy vector II(x, h)that parameterizes retrieval and
generation:
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I1(x,h) = iﬂ(cﬂ X, I, 4)

where each I1;contains hyperparameters such as A, (sparse—dense fusion weight), K, (retrieval
depth), and n,(verification strictness). A concrete example is:

A(xh) = 3 2(dl x,h) 2, K (x h) =[> 2(d] x, h)K,]. (5)

Parameter-efficient domain adaptation. The generator uses a shared backbone ¢,with domain
adapters A,. For a transformer layer weight matrix W € RP*4, a low-rank adapter can be expressed
as:

W, =W, + AW, , AW, = B, A,,B, e RP", A, e R™,r < min(p,q), (6)

so that only (4,4’ B,)is updated per domain while W,stays shared.
3.3. Query Normalization and Canonical Form

Vertical queries differ in intent and constraint structure (proof/derivation vs itinerary constraints
vs compliance clauses). A query normalizer produces a canonical representation X¥consisting of intent,
entities, and constraints:

=g, (xh,z(dl x,h)). (7
The canonical form is treated as a tuple:
%= K,T,L), (8)

where s intent, Eentities, K constraints (budget, time window, eligibility, etc.), Ttemporal hints,
and Llocale/jurisdiction. For sparse retrieval, the canonical tuple is rendered into a lexical query qg,;
for dense retrieval it is encoded directly:

g, = Render(%),e, = f,(%). 9
3.4. Hybrid Retrieval with Router-Conditioned Fusion

Two complementary retrievers are used.

Sparse retrieval. A BM25-style sparse score for document tis denoted sq, (¢ | gsp)-

Dense retrieval. A dense score uses cosine similarity (or dot-product) between query and document
embeddings:

T

s (tl %) =cos(e,.e,) %% f, (). (10)

= 6 =
e, llllell
Router-conditioned score fusion. The fused score is:
s(tl x,h) = 20 )8, (t] %)+ Q- 2(x )8, (t] ay,), (11)

where §denotes min—max (or z-score) normalized scores across candidates to avoid scale
mismatch.
Rank fusion alternative (robust to scaling). Reciprocal Rank Fusion can also be used:

_ w, (x,h)
Sa= 2, k, +rank_(t)’

me{sp,de}

(12)
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where wy,(x, h) is policy-controlled and k,is a small constant (e.g., 60). The top-K(x,h)
documents form a candidate pool P.

3.5. Reranking, Irrelevance Filtering, and Evidence Canonicalization

Cross-encoder reranking. A reranker r,,refines the candidate list using a cross-encoder score:
s, (tl x,h) =r_([x;h;sep;t]), (13)
and the final retrieval score can be:
Sin (1) = as(t| X,h) +(L—a)s,, (t| x,h), (14)

with adetermined by I1(x, h).
Irrelevance filtering (claim-aware). Given a draft claim set Y(from an initial short decode) and a
candidate passage t, a relevance probability is estimated:

p(t) =Pr(Support(t = (X, y))). (15)
Only passages with p(t) = 6(x, h)are retained:
E={teP:p(t)>5(x,h)} (16)

Evidence canonicalization. Each retained document is chunked into spans and standardized:

é = Canon(t,) = (id,title,source,time,span, , entities; ). a7
Deduplication uses embedding similarity between spans:

Keep(é) = ]I(maxj<i cos(v;,v;) < 7/),vi = f,(span,), (18)
so that redundant near-duplicate spans are removed before generation.

3.6. Citation-Controlled Generation and Claim—Evidence Alignment

The generator produces an answer token sequence y = (y4, ..., y) conditioned on canonical
evidence E:

A T A
P (Y I X E) =] TP, (¥: | Y X1 E). (19)
t=1

Attribution distribution over evidence. At each time step (or at sentence boundaries), an evidence-
attention distribution is computed:

where Q.is the decoder query vector and Kzare key vectors for evidence spans. A citation index is
then selected by:

¢, =argmax; a’". (21)

Citation-consistency ~ objective  (span-level). Let ent(e;,s) €[0,1] denote an
entailment/consistency score between evidence span e;and generated sentence s. For sentences {sj}in
the answer, the citation loss is:
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L = Z(l_ent(éc(j)lsj))1 (22)

where c(j)is the cited evidence index for sentence s;. This discourages citations that do not support
the corresponding claim.

Constrained decoding (policy-dependent). For high-stakes settings (e.g., compliance QA),
generation is constrained to avoid unsupported assertions by penalizing tokens that reduce evidence
alignment:

log p'(y,) =109 P, (¥;) = 70X, N)A raignea (¥:): (23)

where n(x, h)is stricter when (FinTech | x, h)is large.

3.7. Verification and Final Answer Selection

After generating a draft (y(©: c¢(©), a verifier evaluates each sentence for support:
K, =max,_, ent(g,s,), (24)
and defines the supported-sentence indicator:
I, =I(x; > 7(x,h)). (25)

Unsupported sentences are revised by either (i) re-retrieval with a targeted query built from the
sentence, or (ii) deletion/softening. A compact selection rule is:

(y,c)=argmax . .. [log p,(y | xh, E) —ﬁz @-I)1 (26)
J
where Bis a small set of candidate revisions and gis a penalty weight.
3.8. Training Objectives for Transferability

Training optimizes retrieval, routing, and generation jointly (or in stages). A typical overall
objective is:

‘c = [’gen + Al‘cret + ﬂ’z‘croute + ;IG‘Ccite + //L4an' (27)
(1) Generation loss.
T A
Lo == logp, (¥;] Y-, %, h, E). (28)
t=1

(2) Retrieval contrastive loss (InfoNCE).

) exp(sin(e,.e.)/7) (29)
- exp(sin(e,,e.)/7)+ Y exp(sin(e, e )/7)’

Tet

(3) Router supervision (policy learning). If an oracle policy IT"is derived from validation gains,
the router can be trained by:

Loge =~ 7 (d)logZ(dl x,h). (30)

(4) Domain-invariant regularization (reducing domain shift). A discriminator D, predicts domain
from embeddings, while the encoder learns domain-invariant features via a minimax objective:

32



min, max, E {Zl[d]logDv(dl f, (X, h))}. (30)
d
This encourages fyto retain task-relevant information while removing domain-specific artifacts.
4. Experiments and Results

4.1. Experimental setup

To evaluate cross-domain transferability for vertical-domain question answering, three
representative scenarios were constructed: academic competition QA, cultural tourism QA, and
financial technology (FinTech) QA. Domain corpora were collected from publicly accessible
materials and domain repositories, covering (i) problem statements and solution write-ups for
academic competition tasks, (ii) point-of-interest descriptions, transportation guidance,
ticketing/visiting rules, and itinerary-related texts for cultural tourism, and (iii) product descriptions,
risk disclosures, compliance clauses, and policy-oriented documents for FinTech. Each query was
paired with a reference answer and annotated supporting evidence spans to enable both answer-
quality evaluation and citation-level groundedness assessment. Two evaluation settings were used:
in-domain (training and testing within the same domain) and few-shot transfer (limited labeled
samples in the target domain with the remaining supervision coming from transferable components).

Baselines include Vanilla RAG (single retrieval strategy with standard generation), Hybrid RAG
(sparse+dense retrieval with reranking), and the proposed T-RAG (domain router + query
normalization + hybrid retrieval + evidence canonicalization + citation-consistent verification). The
main end-to-end metric is F1 (%) for question answering, complemented by retrieval Recall@K and
evidence-grounding indicators including Citation Correctness, Supported Sentence Ratio, and a
normalized Faithfulness Score. All methods use identical corpora and query splits for fairness.

4.2. End-to-End QA Performance under In-Domain and Transfer Settings
B Vanilla RAG B Hybrid RAG B T-RAG (Ours)
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Figure 2: End-to-end F1 across domains (In-domain vs Few-shot transfer)

Figure 2 reports end-to-end F1 across the three domains under both in-domain and few-shot
transfer settings. T-RAG achieves the strongest performance consistently, indicating that explicit
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routing and normalization mitigate domain shift more effectively than a fixed retrieval-generation
pipeline. In the in-domain setting, T-RAG reaches approximately 85.9% (Academic Competition),
83.2% (Cultural Tourism), and 81.0% (FinTech), outperforming Hybrid RAG (around 81.3%, 78.1%,
76.4%) and Vanilla RAG (around 78.5%, 75.2%, 73.1%).

Under few-shot transfer, all methods exhibit a performance drop due to limited target supervision,
yet T-RAG maintains a notably smaller degradation. T-RAG remains around 80.7% (Academic
Competition), 77.5% (Cultural Tourism), and 75.6% (FinTech), while Hybrid RAG and Vanilla RAG
decline more substantially. This pattern supports the design assumption that cross-domain robustness
requires more than stronger retrieval alone: domain-conditioned retrieval fusion, query normalization,
and citation-consistent generation constraints collectively improve generalization when domain
distributions differ.

4.3. Retrieval Quality and Evidence Coverage

Figure 3 compares retrieval Recall@K for the three systems, averaged across domains. Hybrid
RAG improves over Vanilla RAG due to combined sparse and dense retrieval signals, while T-RAG
further increases recall across all K values, especially at moderate K where real deployments
commonly operate (e.g., K=10-20). At K=10, T-RAG achieves roughly 0.82 recall, compared with
about 0.76 for Hybrid RAG and 0.70 for Vanilla RAG. At K=50, T-RAG approaches roughly 0.92,
reflecting stronger evidence coverage for downstream generation.

The gains align with the proposed design: router-conditioned score fusion adapts retrieval
weighting to the query’s domain and intent, improving recall without blindly increasing K. Improved
recall at practical K reduces failure cases where the generator is forced to answer from partial or off-
target evidence, which is particularly critical for long-form reasoning in academic competition QA
and for clause-specific queries in FinTech QA.
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Figure 3: Retrieval RecallAtK
4.4. Citation Correctness and Groundedness in FinTech QA

FinTech QA requires strict traceability, making groundedness metrics as important as answer-level
scores. Figure 4 reports three grounding-related indicators in the FinTech setting. T-RAG achieves
the highest Citation Correctness (approximately 86.9%) and Supported Sentence Ratio
(approximately 88.3%), surpassing Hybrid RAG (about 78.6% and 81.2%) and Vanilla RAG (about
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72.1% and 76.4%). The Faithfulness Score shows a consistent improvement as well (T-RAG around
91%, compared to ~85% for Hybrid RAG and ~81% for Vanilla RAG after normalization to
percentage scale).

These improvements are consistent with the architecture’s explicit controls: evidence
canonicalization reduces citation ambiguity by stabilizing chunk boundaries and metadata, while
verification discourages unsupported statements. Importantly, the gains are not limited to “more
retrieval”; instead, they indicate that retrieval must be paired with evidence-to-claim alignment
mechanisms to reliably satisfy compliance-style QA requirements.

Bl Vanilla RAG B Hybrid RAG B T-RAG (Ours)
100 -

95 A 92.2
90 A
85 A
80 A

Score (%)

75
70 1
65 -

Citation Supported Faithfulness
Correctness Sentence Ratio Score

Figure 4: Citation Groundedness
4.5. Ablation Study

To quantify the contribution of each component, Figure 5 presents an ablation study averaged
across the three domains. The full T-RAG configuration yields about 82.9% F1. Removing the
domain router reduces performance to about 80.1%, showing that adaptive policy selection (retrieval
fusion and generation style control) is a major driver of transfer robustness. Eliminating query
rewriting/normalization leads to about 79.4%, indicating that canonical query structure improves
cross-domain retrieval recall and reduces intent ambiguity.

Two other modules also contribute measurably. Replacing hybrid retrieval with dense-only
retrieval drops to about 78.2%, suggesting that lexical anchoring remains important in domains with
exact terminology (especially policy and product clauses). Removing evidence canonicalization
yields about 79.0%, consistent with evidence formatting being valuable for stable citation mapping.
Finally, removing verification decreases to about 78.6%, confirming that post-generation consistency
checking improves reliability beyond retrieval and prompting alone.
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Figure 5: Ablation Study
4.6. Efficiency—Performance Trade-off

Practical vertical QA deployment often requires low-cost adaptation rather than full fine-tuning.
Figure 6 compares average F1 versus trainable parameters (log scale). Prompt-only adaptation
achieves around 79.2%, while adapter-based tuning (e.g., QLoRA-style parameter-efficient updates)
reaches about 81.6% with a small trainable footprint. Adding router-related adaptation increases to
about 82.9% at modest parameter growth, approaching the performance of full fine-tuning (~83.3%)
with substantially fewer trainable parameters.

This result supports the framework’s intended design for transfer: most benefits are obtained by a
shared backbone plus lightweight specialization (adapters and router), making cross-domain
expansion feasible without costly full-model retraining for each vertical.

841 Full
Adapter Fine-tune
+ Router

83 1

Adapter
82 - QLo

81 1

Average F1 Score (%)

Prompt-

10° 10!
Trainable Parameters (Millions, log scale)

Figure 6: Efficiency Params vs F1
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4.7. Router Behavior and Intent-Sensitive Domain Mixing

Figure 7 visualizes the router’s predicted domain mixture across five common intent categories.
Derivation/proof queries are primarily routed to the academic domain (about 72%), whereas fact
lookup and recommendation queries allocate higher weights to cultural tourism (approximately 55%
and 70%, respectively). Policy compliance queries heavily route to FinTech (about 66%), and risk
explanation similarly favors FinTech (about 72%).

This behavior is consistent with the framework’s objective of intent-aware configuration: domain
mixing is not forced into a single label, enabling queries with overlapping semantics to benefit from
different retrieval and generation policies. Such routing contributes to stable performance under
transfer by selecting retrieval fusion weights and generation constraints that match the evidence style
of the target domain.

Derivation
/ Proof

Fact
Lookup

Recommendation
(Constraints)

Policy
Compliance

Query Intent Category

Risk 71%
Explanation

Academic Tourism FinTech
Predicted Domain Mixture

Figure 7: Router Heatmap
5. Conclusion and Outlook

This paper introduces a transferable Retrieval-Augmented Generation framework for vertical-
domain question answering that targets robust adaptation from academic competition problem
solving to cultural tourism services and financial technology applications. The proposed design
integrates domain-aware routing, query normalization, hybrid retrieval with adaptive score fusion,
evidence canonicalization, and citation-consistent generation with verification, enabling a unified
pipeline to handle heterogeneous corpora and intent distributions while maintaining grounded outputs.
Experimental results across the three domains demonstrate consistent improvements in end-to-end
answer quality, retrieval evidence coverage, and citation correctness under both in-domain evaluation
and few-shot transfer settings. The ablation analysis further confirms that routing, query rewriting,
evidence canonicalization, and verification each contribute meaningfully to transfer robustness, while
efficiency results indicate that parameter-efficient adaptation can achieve competitive performance
without full model fine-tuning.

Future work can extend the framework toward broader vertical coverage and stronger reliability
guarantees by incorporating more fine-grained temporal validity modeling for tourism information,
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stricter compliance-aware decoding constraints for FinTech, and scalable continual learning
strategies that update retrieval indexes and adapters without degrading previously learned domains.
In addition, integrating user feedback signals and domain-specific evaluation protocols for risk-
sensitive scenarios may further improve trustworthiness and deployment readiness for real-world
vertical-domain question answering systems.
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