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Abstract. A convolutional neural network (CNN) can perform well in a variety of 
applications such as human face gender classification, but requiring flips of convolutional 
kernels in implementation. By replacing convolution with correlation, we propose a 
correlational neural network (CorNN) instead of a CNN. A CorNN takes advantage over a 
CNN in that it requires no flips of correlational kernels in implementation, saving a lot of 
training and testing time. Experimental results show that an 8-layer CorNN for gender 
classification can not only perform as well as the corresponding CNN, but also run 
surprisingly faster with a relative reduction of 11.29%~18.83% training time, and 
10.16%~16.57% testing time. 

1. Introduction 

Human face gender classification is a subject of automatically identifying the gender (male or 
female) of a human face image. It is easy for a human but challenging for a computer [1], with wide 
applications in customer advertisement, visual surveillance, intelligent interface, population 
statistics, and so on. 

As a traditional method, fully-connected neural networks were applied to identification of human 
face gender many years ago [2] [3][4][5]. However, the fully-connected neural networks did not 
take into account the two-dimensional structure of an image when extracting features from it. As a 
consequence, they are not satisfactory in terms of gender classification accuracy. Their drawbacks 
ignoring 2D structure information could be overcome partly by convolutional neural networks 
(CNNs). Recently, Verma et al. have implemented a 6-layer CNN to identify face gender. However, 
this CNN needs plenty of epochs which is 25000 to achieve 88.46% accuracy on a dataset 
containing 4700 face images from the web [6]. 

Primarily, a CNN is designed to recognize 2D shapes by inspiration of the visual neural 
mechanism with some degree of translation invariance. In 1962, Hubel and Wiesel proposed the 
concept of receptive field in studying the cat’s visual cortex cells [7]. With the insight of receptive 
field, Fukushima developed the model of neocognitron [8], perhaps the first implemented CNN. 
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Commonly, a CNN is composed of input layer, convolutional layer, subsampling layer, 
convolutional layer, subsampling layer, …, fully-connected layers and output layer. It has two 
distinguishing features: local connectivity and shared weights. The local connectivity allows the 
network to first create good representations of small parts of the input, then assemble 
representations of larger areas from them. The shared weights allow for features to be detected 
regardless of their position in the visual field, thus constituting the property of translation invariance.  

Due to the superior ability of feature extraction, CNNs have been successfully applied to many 
important fields, such as character recognition [9], face recognition [10], face tracking [11], and 
traffic sign recognition [12]. Especially in ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC), CNNs play a vital role in achieving the best performance [13]. 

However, a CNN has a disadvantage in implementation of convolutional operation, which may 
require a huge number of horizontal flips and vertical flips of convolutional kernels. This can 
obviously slow down the training speed of a CNN on big datasets. In order to eliminate the flipping 
effect, we present a new model, called correlational neural network (CorNN). Compared to a CNN, 
a CorNN has no requirement of flipping convolutional kernels, thus running faster than a CNN. 
Furthermore, we implement an 8-layer CorNN for gender classification in this paper. 

The rest of the paper is organized as follows. Section 2 gives the model of CorNN in detail. 
Section 3 makes a comparative evaluation for gender classification of CorNN and CNN in 
experiments. Finally, Section 4 makes a few conclusions. 

2. Correlational Neural Networks 

2.1. Equivalence between CNNs and CorNNs 

A CNN has four basic operations: inner convolution, outer convolution, subsampling, and 
upsampling. These operations are defined as follows. 

Suppose A  is a M N  matrix and B  is a m n  matrix. If M m  and N n , then their inner 
convolution  C A B

  is defined with each element computed as: 
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And their outer convolution is defined by: 
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If matrix A  is divided into non-overlapping blocks of size    with the ij-th block denoted 
by , ( , )i j 

AG , then we have 
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Here the subsampling of , ( , )i j 
AG  is chosen as the mean pooling, 
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The non-overlapping subsampling of matrix A  with block size    is defined as: 

   , , ( , ) .down down i j    AA G                                                            (6) 
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The non-overlapping upsampling of matrix A  with multiple size    is defined as: 

  ,up     A A 1                                                                  (7) 

where  1  is a matrix of 1, and   denotes the Kronecker product. 
Correspondingly, a CorNN also has four basic operations: inner correlation, outer correlation, 

subsampling, and upsampling. 
The definitions of subsampling and upsampling in the CorNN are the same as in the CNN. 
The inner correlation =C A B   between matrix A  and matrix B  is defined as: 

1, 1
1 1

, 1 1, 1 1.
m n
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                                                  (8) 

The outer correlation between A  and B  is defined as: 

= .BA B A B
                                                                      (9) 

where BA


 is the same as in formula (2). 
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Accordingly, the inner and outer convolutions of A  and B are: 
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Meanwhile, the inner and outer correlations of A  and B are: 
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Generally, the inner and outer convolutions of two given matrices are different from their inner 
and outer correlations. However, in theory an arbitrary CNN can be simulated by a corresponding 
CorNN, and vice versa. 

In fact, for any convolutional kernel w of size mn, we can define a horizontal flip of w below: 

      ( ),HF w w                                                                   (13) 

where , 1,1 ,1ij i n jw w i m j n       . 
Moreover, we can also define a vertical flip of 'w  below: 

            ( '),VF w w                                                                  (14) 

where '
1, , 1 ,1ij m i jw w i m j n       . 

Hence, for an input (or a convolutional map) x , we have 

  = .VF HF  x w x w x w  
                                                      (15) 

20



 

This means that if we replace all convolutional kernels w in a CNN with their corresponding 
correlational kernels, namely, 

     ,VF HF w w                                                              (16) 

we can get a CorNN that always produce the same output as the CNN for the same input. 
In the meantime, because   VF HF w w , we can also get a corresponding CNN that always 

produce the same output as any given CorNN for the same input. 
Therefore, CNN is equivalent to CorNN in functionality. Because a convolutional operation may 

require a large number of vertical and horizontal flips in implementation, it can be expected that a 
CorNN should be more efficient than the corresponding CNN in training and testing. Therefore, we 
propose a CorNN instead of a CNN for gender classification in the next subsection. 

2.2. A CorNN for Gender Classification 

As mentioned previously, a 6-layer CNN has been designed to identify face gender [6], but 
requiring more than twenty thousand epochs of training to achieve a satisfactory result. Considering 
deeper neural networks may perform better [14], in Fig.1 we present an 8-layer CorNN for gender 
classification. The CorNN consists of an input layer x , three correlational layers ( 1 3 5, ,h h h ) of sigmoid 
neurons, three subsampling layers ( 2 4 6, ,h h h ), and an output layer o. The input is a face image for 
correlational layers to extract gender features with subsampling layers for dimensionality reduction. 
The three correlational layers are ordered alternately with the three subsampling layers. The last 
subsampling layer is directly connected to the output layer. The output layer is composed of two 
sigmoid neurons for gender classification. 

 

2.3. Learning Algorithm for the CorNN 

For the l-th sample lx , we can describe the computing procedure of the CorNN as follows: 
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Figure 1 The architecture of the proposed CorNN. 
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where    1/ 1 xx e   ,  g x x . 1, jW , 3, jW  and 5, jW  stand for the correlational kernels (or weights) of 
the first, third and the fifth hidden layers, 1, jb , 3, jb and 5, jb  for the related correlational bias, 1,

l
jh , 3,

l
jh  

and 5,
l

jh  for the related correlational maps. 2,
l

jh , 4,
l

jh  and 6,
l

jh  are the corresponding subsampling maps 
computed from 1,

l
jh , 3,

l
jh  and 5,

l
jh , respectively. 7W and 7b  are the weight vector and the bias vector of 

the output layer. lo  is the output vector. Note that 6
lH  should be viewed as a vector. 

Based on the BP learning of CNNs, it is not difficult to derive a BP algorithm for CorNNs, called 
CorNN-BP, to learn the parameters of the 8-layer CorNN discussed in Section 2.2. 

Suppose we have N  two-class training samples  ,l lx y (1 l N  ), where ly  is the expected output 
for the input lx , with the actual output lo . The objective function is the squared error over all 
training samples, namely: 
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An important part of the CorNN-BP is to compute all the sensitivities kδ  (1 7k  ) as follows, 
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where ' '  denotes the element-wise product, ( )up    denotes the upsampling function defined by 
(7). 7

l  stands for the sensitivity of the output layer, 6,
l

j , 5,
l

j , 4,
l

jδ , 3,
l

j , 2,
l

jδ , and 1,
l

jδ  for the sensitivities 
of the lower layers. 

Using the sensitivities, the CorNN-BP then computes the partial derivatives of the objective 
function NL  with respect to weights and biases below, 
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Finally, the CorNN-BP updates the weights and biases using gradient descent.  
The main advantage of the CorNN-BP lies in that it requires no flips of weight matrices in 

implementation, because of using inner correlations and outer correlations instead of inner 
convolutions and outer convolutions. This can save a lot of training and testing time with a bit 
surprise, as shown in experimental results. 

3. Experimental Results 

In order to demonstrate the validity of the proposed CorNN for face gender classification, we 
compare it with a CNN with the same structure on nine human face databases: ORL, Georgia Tech, 
FERET [15], Extended Yale B (EYB) [16], AR [17], Faces94, LFW [18], MORPH and 
CelebFaces+ [19]. The examples of face images from these databases are shown in Fig. 2. The 
proposed CorNN and the corresponding CNN are implemented in Matlab R2010a. Both of them 
take the learning rate of 0.1 on all the databases, with the maxepoch of 50 on the first six and 1000 
on the last three. All experiments were conducted on a PC platform with i7-3770 3.10-GHz 
processor, 8-GB memory, and Windows 7.0 operation system. 

3.1. Preprocessing of Images in Databases 

The nine face databases for experiments are detailed in Table 1. “MR”, “FR”, and “TR” denote 
number of males training samples, number of female training samples and number of total training 
samples, respectively. “ME”, “FE”, and “TE” denote number of male testing samples, number of 
female testing samples and number of total testing samples, respectively. Moreover, no person has 
some of his/her images in training set and others in testing set simultaneously. Additionally, ORL, 
FERET, EYB and AR consist of gray images, whereas Georgia Tech, Faces94, LFW, MORPH and 
CelebFaces+ consist of color images. Before experiments, all these images were resized to 3232 
with color images converted into gray ones, with the value of each pixel normalized into [0, 1]. 

Table 1 Databases used in experiments 

Databases Training Samples Testing Samples 
MR FR TR ME FE TE 

ORL 320 30 350 40 10 50 
Georgia Tech 450 75 525 195 30 225 

FERET 658 532 1190 105 105 210 
EYB 1280 384 1664 576 192 768 
AR 910 910 1820 390 390 780 

Faces94 2000 400 2400 660 20 680 
LFW 8000 1900 9900 2000 800 2800 

MORPH 40997 7102 48099 3000 1000 4000 
CelebFaces+ 27887 37113 65000 2500 2500 5000 
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(a)                              (b)                          (c) 

       

(d)                             (e)                          (f) 

       

(g)                           (h)                            (i) 

Figure 2 Examples of face images in nine databases: (a) ORL, (b) Georgia Tech, (c) FERET, (d) 
EYB, (e) AR, (f) Faces94, (g) LFW, (h) MORPH, (i) CelebFaces+. 

3.2. Whole Comparison of Accuracies and Time 

In Table 2, we give the testing accuracies of CorNN and CNN for whole comparison on the nine 
databases. It is shown that CorNN can perform sometimes as well as CNN (e.g., on ORL and AR), 
sometimes slightly better (e.g., on Georgia Tech, EYB, LFW, and CelebFaces+), and sometimes 
slightly worse (e.g., on FERET, Faces94, and MORPH). Hence, CorNN is as good as CNN in terms 
of accuracy for gender classification. 

Table 2 Whole comparison of testing accuracies (%) 

Databases CNN CorNN 
ORL 98.00 98.00 

Georgia Tech 97.60 98.22 
FERET 94.77 94.29 

EYB 98.53 98.69 
AR 98.71 98.71 

Faces94 96.46 96.18 
LFW 87.00 87.14 

MORPH 92.73 92.23 
CelebFaces+ 85.18 85.34 

Table 3 Whole comparison of training/testing time (s) 

Databases CNN CorNN Reduction 
ORL 164.15/2.96 146.65/2.61 10.66%/11.82% 

Georgia Tech 166.65/3.33 141.60/2.82 15.03%/15.31% 
FERET 501.60/10.03 444.95/9.01 11.29%/10.16% 

EYB 1497.95/30.03 1215.80/26.27 18.83%/12.52% 
AR 666.90/13.33 577.10/11.79 13.46%/11.55% 

Faces94 2068.80/20.82 1695.60/17.37 18.03%/16.57% 
LFW 16464/31.31 14334/29.42 12.94%/15.61% 

MORPH 50961/54.75 43737/48.32 14.17%/11.74% 
CelebFaces+ 91848/62.19 79641/54.83 13.26%/11.83% 
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In Table 3, we give the training/testing time of CNN and CorNN for whole comparison on the 
nine databases. It is shown that the CorNN takes less than the CNN, with a relative reduction of 
11.29%~18.83% training time, and 10.16%~16.57% testing time. 

3.3. Separate Comparison of Accuracies 

In Table 4, we give the testing accuracies of CorNN and CNN for male comparison and female 
comparison on three databases (i.e., EYB, Faces94 and LFW), with “M” and “F” standing for male 
and female. It is also shown that CorNN can have as good performance as CNN for male 
identification and female identification separately, albeit with a slight difference.  

Table 4 Separate comparison of testing accuracies (%) 

Databases CNN CorNN 
M F M F 

EYB 100 97.06 99.65 97.73 
Faces94 98.48 94.44 98.94 93.42 

LFW 95.00 79.00 95.00 79.28 

4. Conclusions  

Using correlational operation instead of convolutional operation, we propose a CorNN that is 
equivalent to its corresponding CNN. Moreover, we design an 8-layer CorNN for human face 
gender classification, together with the learning algorithm CorNN-BP. Additionally, we compare 
the 8-layer CorNN with the CNN in experiments, verifying that they almost have the same 
performance in terms of accuracy. However, a CorNN can save a relatively large amount of training 
time and testing time, due to no requirement of flipping correlational kernels. This is the main 
advantage of CorNN over CNN. 
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