
Context Based Entity Graph Convolutional Network for Multi-hop Reading
Comprehension

Lunhua Zhanga*, Xiaohong Liub
Beijing University of Posts and Telecommunications

alunhuazhang@bupt.edu.cn, bxiaohongliu@bupt.edu.cn

Keywords: Multi-hop reading comprehension; Graph convolutional network; Memory network;
Multi-granularity encodings

Abstract: Multi-hop reading comprehension poses new challenge on machine reading
comprehension tasks which requires reasoning between multiple documents. In this paper, we
propose a graph-based model called Context based Entity Graph Convolutional Network (CEG). In
order to take full advantage of context information, on the one hand we apply multi-granularity
encodings for entity which capture rich context information, on the other hand we extract
surrounding context of entity to enrich entity encoding. The surrounding context of entity will
further be utilized by Memory Network to support graph reasoning. Experimental evaluation shows
CEG achieves competitive performance on the QAngaroo WIKIHOP dataset, and the following
ablation test demonstrates our proposed context extraction modules are effective in multi-hop
reading comprehension.

1. Introduction
Machine Reading Comprehension (MRC) requires the model to answer a natural language

question given relevant context. The advent of large-scale datasets, such as SQuAD[1] and
CNN/Daily mail[2], greatly promotes the development of the field. Many end-to-end deep neural
models such as BiDAF[3] and SAN[4] are constructed to tackle the problem, achieving great success
especially after the release of the BERT[5]. But the challenge still remains, many of these datasets
are specified to single-hop reading comprehension, in which the answer can be concluded by only
reading a single paragraph or sentence. While in many real scenarios, people have to reason across
multiple documents in order to find the answer.

The WIKIHOP[6] dataset was proposed exactly to meet the above challenge. Each sample in
WIKIHOP contains multiple supporting documents, and the goal is to select the correct answer in a
set of candidates for a query. The dataset is carefully constructed to ensure that most queries cannot
be answered by only reading a single document. Multi-step reasoning chains across documents are
needed to find the correct answer which poses great challenge for previous models. Some baseline
models such as BiDAF[3] and DCN[7], which have fine performance in single-hop MRC tasks,
suffer dramatic accuracy decline in this task.

In this paper, we propose a multi-hop MRC model, named Context based Entity Graph
Convolutional Network (CEG). Based on graph convolutional network (GCN), the model performs
graph reasoning to learn relation-aware representation of nodes. There are two types of nodes in
graph, entity nodes and candidate nodes. Entity nodes are mentions of candidate nodes which are
extracted from supporting documents. Attention mechanism is utilized to attend query information
into nodes. To encode rich context information, multi-granularity encodings are applied.
Furthermore, entity nodes are coupled with supporting context which will be utilized by Memory
Network to support graph reasoning.

Experimental results demonstrate that CEG achieves competitive performance on the WIKIHOP
dataset. Ablation test also shows CEG benefits from rich contextual encoding, attention mechanism
and graph convolutional network.

Our contributions in this work are as follows:

2020 5th International Conference on Mechatronics, Control and Electronic Engineering (MCEE 2020)

Published by CSP © 2020 the Authors 267

Utilizing multi-granularity encodings to acquire context information at different level.
Extracting surrounding context of entity nodes to make full use of context information in

supporting documents.
Applying Memory Network to extract relevant context information of nodes to support graph

reasoning.

2. Related Work
Recently, graph-based models are proved to be efficient in the task of multi-hop MRC. MHQA-

GRN[8] and Entity-GCN[9] are the first attempts in this direction. They extract entities from
documents to make entity graph. Then multi-hop reasoning is processed between document nodes to
learn complex relationship among entities so as to derive relational information for answering the
query. BAG[10] introduces a new bi-directional attention which encodes mutual information
between graph nodes and query. CFC[11] uses co-attention and self-attention to do coarse and fine
reasoning in documents without using graph. HDE[12] proposes heterogeneous document-entity
graph which contains different types of query-aware nodes representing different granularity levels
of information.

The models above can be divided into two categories. One utilizes only nodes information using
pretrained contextual embedding such as ELMo[13]. Entity-GCN and BAG fall into this category.
The other makes use of full document context followed by attention to extract relevant information.
These models tend to use simple word embedding such as GLoVe[14] considering training cost.
CFC and HDE are representative models in this category. Our model differs from those models in
that it stands in the middle of the two categories and combines the advantages of them. On the one
hand, the pretrained BERT embedding is applied due to the superior performance in contextual
encoding. Note that BERT embedding is limited to query, entities and candidates due to memory
limits. The BERT embedding is generated in offline step which does not effect the efficiency of
online training. On the other hand, we extract nodes surrounding tokens as supporting context. The
supporting context will be used by memory network to enrich node encoding.

Documents

Candidates

Query

GLoVe

Char

BERT

Entity
extraction
with entity

context

Bi-GRU

Bi-GRU

Bi-GRU

Entity
context

encoding

Entity
encoding

Candidate
encoding

Co-
attention

Co-
attention

Co-
atttention

Self-
attention

Self-
attention

Memory
network

based
context

extraction

R-GCN

R-GCN

R-GCN

L-layer
R-GCN

Entity
node

scores

Cand
scores I

Final scores

FCFC

Cand
scores II

Query
encoding

Candidate node
initial state

Entity node
initial state

Entity node
hidden stateConcat&

FC

Concat&
FCSplit

max
BERT

GLoVe

Char

Entity
Extraction

GLoVe

Char

BERT

Fig. 1. Framework of CEG model. Red dash lines apply for first layer in GCN, blue dash dot lines

apply for other layers.

3. Model
We first introduce the task of WIKIHOP[6] dataset. A sample comprises of a query, a set of

supporting documents and a set of candidate answers. The query is in form of (s, r, ?) which
268

represents subject, relation and unknown object respectively. The dataset is created to guarantee the
unknown query object and candidate answers are entities in supporting documents. In fact, there is at
least one reasoning chain which starts from the query subject and runs through several candidates
between documents to arrive at the final answer. The goal of the model is to find the right answer in
candidates through document reasoning.

The proposed CEG model are shown in Fig. 1. It can be categorized into four parts: (A)
contextual encoding, (B) graph construction and reasoning, (C) memory network based contextual
extraction, (D) output layer.

3.1. Contextual encoding
Entity extraction. In multi-hop reading comprehension scenarios, multiple documents are required

to answer a query. Simply concatenating the documents and applying a previous neural MRC model
does not achieve promising performance yet with enormous resource costs. Graph models are based
on entity nodes which do not require the full document context. As mentioned above, query answer
is in candidate set and candidates are entities in documents. A simple string matching heuristic is
used to find candidate mentioned in documents as entity nodes. Now that we have the start and end
position of every entity node in its corresponding supporting document, surrounding tokens around
the entity node mention are extracted as supporting context for the entity node. Finally, a set of entity
nodes are obtained. For entity node i, we define the node content as ei, the node supporting context
as si, together they make up the whole context wi. The length of the whole context wi is fixed which
defined as lw and the length of surrounding tokens on both sides should keep consistent if condition
allows, so that context information from forward direction and backward direction can both be
acquired.

Multi-granularity context encoding. MRC tasks require the model to gather context information to
have a thorough understanding of documents and query, so we apply multi-granularity encoding
trying to capture context information at different level. First, the pretrained word embedding
GLoVe[14] is used to represent tokens at word level. Then we apply character ngram vectors[15] to
encode tokens at character level which also offset the low word coverage of GLoVe. Moreover, a
strong pretrained model BERT[5] is utilized to acquire rich contextual encoding.

For query q, glove, char and bert embedding matrix are concatenated as Xq ∈ ℝlq×dq where lq is
the length of query tokens and dq = dglove + dchar + dbert . Then bidirectional recurrent neural
network (RNN) with gated recurrent unit (GRU) is applied to encode the contextual information in
query. The output is Hq ∈ ℝlq×h , where h denotes the output dimension of RNN encoder. For
candidate node c, similar method is applied to get Hc ∈ ℝlc×h where lc is the length of candidate
node tokens. For entity node e and entity node supporting context s, glove and char embedding
matrix of the whole context w are concatenated as Xw ∈ ℝlw×dw where lw is the length of whole
context and dw = dglove + dchar. We also use BiGRU to encode the whole context to get Hw ∈
ℝlw×h , then split it into Te ∈ ℝle×h and Hs ∈ ℝls×h . le and ls represent the length of entity node
tokens and the length of entity node supporting context tokens respectively, and le + ls = lw . It
should be noted that BERT embedding for entity node Be ∈ ℝle×dbert is calculated based on original
documents, then extracted according to the position indices of the node tokens. Due to resource
limits, BERT embedding for entity nodes supporting context is not used. Be and Te are concatenated
column-wise and transformed into He ∈ ℝle×h via a 1-layer linear network. At last, we get
contextual encoding Hq , He , Hs , Hc for query, entity node, entity node supporting context and
candidate node respectively.

Co-attention. Co-attention is widely used in single-hop reading comprehension tasks. Recently it
was applied to multi-hop reading comprehension. It is responsible for generating mutual information
between query and entity nodes (entity nodes supporting context or candidate nodes). Take a query
and a entity node for illustration. Co-attention combines learned query contextual information
attended by entity node and entity node contextual information attended by query.

Given RNN encoded sequences of a query Hq ∈ ℝlq×h and a entity node He ∈ ℝle×h . The

269

similarity matrix between query and entity node is calculated via

 Aqe = He�Hq�
T ∈ ℝle×lq  (1)

Then the attended entity node and query can be derived by

  Se = softmax(Aqe)Hq ∈ ℝle×h  (2)

  Sq = softmax(Aqe
T)Hn ∈ ℝlq×h (3)

where softmax(⋅) represents column-wise normalization. Next the attended query is further co-
attended followed by a linear projection:

  Re = MLP(softmax�Aqe�Sq) ∈ ℝle×h (4)

MLP(∙) is a one-layer MLP with tanh activation. The final co-attention context can be obtained
via

 Ze = MLP(concat(He, Se, He ∘ Se, He ∘ Re)) ∈ ℝle×h  (5)

where MLP(∙) is a one-layer MLP with tanh activation. concat(∙) stands for column-wise
concatenation. The operator ∘ is element-wise multiplication.

The co-attended context Ze is expected to carry query-aware contextual information of the entity
node. Similar method can be applied to query and entity nodes supporting context, and query and
candidate nodes to get Zs and Zc.

Self-attention. Self-attention performs context summarization by calculating a normalized score
for every token in the context and compute a weighted sum over the context encoding. In entity
graph, node should be a fixed-length non-sequential vector while co-attended context is sequential.
So self-attention is applied to summarize the co-attention output of entity nodes and candidate nodes.
Formally, given Ze as input, the self-attention can be formulated as

  ae = softmax(MLP(Ze)) ∈ ℝle×1 (6)

  ze = ZeTae ∈ ℝh  (7)

where MLP(∙) is a two-layer MLPs with tanh activation. The hidden layer size is half of the input
dimension, and the output dimension is 1. The output ze provides a summary of co-attended
sequential vector Ze. Similarly, we can get candidate node summary zc using self-attention.
3.2. Graph construction and reasoning

Graph construction. Graph is made up of nodes and edges. The graph is undirected so that the
information can be propagated in both directions. There are two types of nodes in graph: entity nodes
and candidate nodes. Entity nodes are mentions of candidates from documents. Inspired by HDE[12],
we add candidate nodes to gather and summarize information from different entity nodes of the same
mention. For edge connections, different types of edges are defined to encode various structural
information in the graph:

1) Entity node pair of different mentions are connected if they are extracted from the same
document.

2) Entity node pair of the same mention are connected if they are extracted from different
documents.

3) An entity node and a candidate node are connected if the entity node is a mention of the
candidate node.

4) All candidate nodes connect with each other.
5) Entity nodes that do not meet the previous conditions are connected.
Message passing. Relational Graph Convolutional Network (R-GCN)[16] is applied to propagate

message across graph nodes and generates relational representations of nodes. R-GCN has multiple
layers which correspond to multi-hop graph reasoning. Nodes can aggregate message passed from
neighboring nodes, and a message is specific to a certain edge type (also referred as relation). At first

270

layer, we initialize the self-attention output as node representation oi1. Then, at lth layer, we use
memory network to extract relevant context information (described in next section) for entity node,
which will be concatenated with raw entity node representation to form new node representation.
Candidate node representation remains unchanged:

 gil = �
fs �concat �oil, MN�Zs, oil��� i is entity node

oil i is candidate node
  (8)

gil ∈ ℝh is new node representation for node i at lth layer. MN(∙) stands for memory network
which will be introduced in next section. Zs is supporting context for entity node i which is generated
in co-attention and keeps constant during graph reasoning. fs represents linear transformation to keep
node dimension constant. h is node vector dimension.

After obtaining node representation, R-GCN performs aggregation to gather information from
neighbors of each node, then combines node information to generate update information. The
process can be formulated as

  uil = W0
lgil + ∑ 1

�𝒩𝒩i
r�
∑ Wr

lgjlj∈𝒩𝒩i
rr∈ℛ  (9)

where ℛ is the set of all edge types and 𝒩𝒩i
r is the set of indices of the neighboring nodes that

share type r edge connection with node i. The symbol |∙| denotes size of a set. Wr
l ∈ ℝd×d is a

weight matrix specific to edge type. W0
l ∈ ℝd×d applies linear transformation the node representation.

To avoid smoothing problem in GNN[17], a gating mechanism is applied to control the amount of
update information that should propagate to the next hop:

  pil = σ(fg(�gil, uil�) (10)

where σ(∙) is sigmoid function and fg is linear transformation. The symbol [∙,∙] denotes column-
wise concatenation. Finally, the node representation in the next layer is defined as gated combination
of a non-linear transformed update message and the previous representation:

  oil+1 = pil ∘ tanh�uil� + �1 − pil� ∘ gil (11)

where ∘ denotes element-wise multiplication. It should be noted that all parameters are shared
layer to layer in order to decrease model complexity.

3.3. Memory network based contextual extraction
Memory network stores knowledge source in memory, and uses a state vector to extract relevant

information from source to support further reasoning. Miller et al.[18] apply Key-Value Memory
Network to perform QA. Inspired by their work, we apply memory network to extract contextual
information that cannot be directly encoded in nodes representation.

Knowledge source stored in memory is the entity node supporting context Zs, state vector is the
raw entity node representation o. Note that in every step of graph reasoning, memory network
module will be performed for every entity node simultaneously, so we ignore superscript l and
subscript i in oil which indicates the representation of entity node i in lth layer.

Key addressing. Key and value are both Zs in our memory network. During key addressing, each
word in the supporting context is assigned a relevance probability by comparing each word to the
state vector:

  p = softmax(Zso) (12)
Value reading. Value reading result is the weighted sum of memory value using key addressing

probability:

  m = ZsTp  (13)
The whole memory network module can be denoted as

271

  MN(Zs, o) → m  (14)
3.4. Output layer

After graph reasoning, final representation of entity nodes and candidate nodes are obtained. Note
that entity node is mention of corresponding candidate node in original document. The candidate
score is calculated via

  p = softmax(fC(OC) + cmax (fE(OE))) (15)

where OC ∈ ℝNC×h is the final representation of candidate nodes and NC is the number of
candidates. OE ∈ ℝNE×h is the final representation of entity nodes and NE is the number of entity
nodes. cmax (∙) is defined to take the max score over entity nodes that belong to the same candidate.
fC and fE are two-layer MLPs with tanh activation. The hidden layer size is half of the input
dimension, and the output dimension is 1. Candidate node score and entity node score are summed as
final candidate score. Softmax is then applied to generate the probability distribution which indicates
the probability of each candidate becoming the answer. The loss function is defined as the cross
entropy between one-hot answer vector and the predicted probability.

4. Experiment
We use only the unmasked version of the WIKIHOP dataset. There are 43738 samples in the

training set, 5129 samples in the development set and 2451 samples in the test set. The test set is not
public so the model will be evaluated blindly.

In the experiment, we use base-cased BERT pretrained model and generate 768-dimensional
embedding for query, entities and candidates offline. Besides, 300-dimensional GLoVe embedding
and 100-dimensional character n-gram embedding are used to encode entity supporting context,
query and candidates. The encoding size h is 200. The length of whole context is fixed as 64. The
number of GCN layer is set as 5. In addition, dropout with rate 0.2 is applied before attention and
before graph reasoning. We use Adam as optimizer. The learning rate is initialized as 2 × 10−4
which will be halved for every 5 epochs. We train the model for 20 epochs.

Table 1 The performance of different models on WIKIHOP dataset

Model Accuracy(%)
Dev Test

BiDAF - 42.9
Entity-GCN 64.8 67.6
CFC 66.4 70.6
BAG 66.5 69.0
HDE 68.1 70.9
Our Model 69.6 73.6

As shown in Table 1, the proposed CEG model achieves competitive performance compared to
the previously published models. It is much better than the baseline BiDAF[7] model presented in
the WIKIHOP paper. Compared to the previous graph-based models such as Entity-GCN[10],
BAG[11] and HDE[13], CEG surpasses them by a large margin. Note that the accuracy improvement
in test set is more substantial than in development set, proving the robustness of the model.

Table 2 Ablation results on WIKIHOP dev set

Model Accuracy (%)
Dev ∆

Full Model 69.6
- BERT 66.8 2.8
- GLoVe & Char 68.6 1.0

272

Model Accuracy (%)
Dev ∆

- Entity node context 67.1 2.5
- Candidate nodes 68.4 1.2
- Attention 66.9 2.7
- GCN 64.7 4.9

Ablation results are shown in Table 2. First, we verify the effectiveness of two context encoding
methods we propose. Without BERT embedding and GLoVe&Char embedding, the accuracy on
WIKIHOP development set drops 2.8% and 1.0% respectively. This indicates the efficiency of
multi-granularity encoding. If we do not use entity node context, the accuracy shows 2.5% absolute
drop. The results above prove the contextual information is vital for reasoning.

Then, we investigate the effect of other modules in CEG model. Once the candidate nodes are
removed, the accuracy has 1.2% drop. We suspect it is because candidate nodes can gather
information from the entity nodes of the same mention, it performs as a sort of summarization which
can improve model performance. If the attention is replaced by concatenation of query and nodes
(nodes context), the model performance is dropped by 2.7%, which reflects the importance of
attention mechanism. If GCN is removed and the output of self-attention is directly used in output
layer, the accuracy drops 4.9%. It is the largest drop in ablation test, which indicates the GCN plays
fundamental roles in the model.

5. Conclusion
A graph-based model CEG is proposed for multi-hop reading comprehension which focuses on

making more use of context information from documents. To achieve the goal, two main methods
are applied. One is using multi-granularity embedding to acquire encoding at different level, and the
strong contextual embedding BERT is utilized in this model. The other is to extract supporting
context for entity nodes in documents which is used as source for memory network to generate
context information to support reasoning. The experimental results demonstrate the effectiveness of
the two proposed methods, and the model achieves competitive performance in WIKIHOP dataset.
In the future, we would like to further investigate more powerful ways to encode the context
information into graph nodes, and try to apply the methods to other tasks in MRC.

Acknowledgements
This work is supported by NSFC 61773037. Special thanks also give to Johannes Welbl for

helping me evaluating the model.

References
[1] Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250.
[2] Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., &
Blunsom, P. (2015). Teaching machines to read and comprehend. In Advances in neural
information processing systems (pp. 1693-1701).
[3] Seo, M., Kembhavi, A., Farhadi, A., & Hajishirzi, H. (2016). Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603.
[4] Liu, X., Shen, Y., Duh, K., & Gao, J. (2017). Stochastic answer networks for machine reading
comprehension. arXiv preprint arXiv:1712.03556.
[5] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

273

[6] Welbl, J., Stenetorp, P., & Riedel, S. (2018). Constructing datasets for multi-hop reading
comprehension across documents. Transactions of the Association for Computational Linguistics, 6,
287-302.
[7] Xiong, C., Zhong, V., & Socher, R. (2016). Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604.
[8] Song, L., Wang, Z., Yu, M., Zhang, Y., Florian, R., & Gildea, D. (2018). Exploring graph-
structured passage representation for multi-hop reading comprehension with graph neural networks.
arXiv preprint arXiv:1809.02040.
[9] De Cao, N., Aziz, W., & Titov, I. (2018). Question answering by reasoning across documents
with graph convolutional networks. arXiv preprint arXiv:1808.09920.
[10] Cao, Y., Fang, M., & Tao, D. (2019). BAG: Bi-directional Attention Entity Graph
Convolutional Network for Multi-hop Reasoning Question Answering. arXiv preprint
arXiv:1904.04969.
[11] Zhong, V., Xiong, C., Keskar, N. S., & Socher, R. (2019). Coarse-grain fine-grain coattention
network for multi-evidence question answering. arXiv preprint arXiv:1901.00603.
[12] Tu, M., Wang, G., Huang, J., Tang, Y., He, X., & Zhou, B. (2019). Multi-hop Reading
Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs. arXiv
preprint arXiv:1905.07374.
[13] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L.
(2018). Deep contextualized word representations. arXiv preprint arXiv:1802.05365.
[14] Pennington, J., Socher, R., & Manning, C. (2014, October). Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP) (pp. 1532-1543).
[15] Hashimoto, K., Xiong, C., Tsuruoka, Y., & Socher, R. (2016). A joint many-task model:
Growing a neural network for multiple nlp tasks. arXiv preprint arXiv:1611.01587.
[16] Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., & Welling, M. (2018,
June). Modeling relational data with graph convolutional networks. In European Semantic Web
Conference (pp. 593-607). Springer, Cham.
[17] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.
[18] Miller, A., Fisch, A., Dodge, J., Karimi, A. H., Bordes, A., & Weston, J. (2016). Key-value
memory networks for directly reading documents. arXiv preprint arXiv:1606.03126.

274

	1. Introduction
	2. Related Work
	3. Model
	3.1. Contextual encoding
	3.2. Graph construction and reasoning
	3.3. Memory network based contextual extraction
	3.4. Output layer

	4. Experiment
	5. Conclusion
	Acknowledgements
	References

