
Context Based Entity Graph Convolutional Network for Multi-hop Reading 
Comprehension  

Lunhua Zhanga*, Xiaohong Liub 
Beijing University of Posts and Telecommunications 

alunhuazhang@bupt.edu.cn, bxiaohongliu@bupt.edu.cn 

Keywords: Multi-hop reading comprehension; Graph convolutional network; Memory network; 
Multi-granularity encodings  

Abstract: Multi-hop reading comprehension poses new challenge on machine reading 
comprehension tasks which requires reasoning between multiple documents. In this paper, we 
propose a graph-based model called Context based Entity Graph Convolutional Network (CEG). In 
order to take full advantage of context information, on the one hand we apply multi-granularity 
encodings for entity which capture rich context information, on the other hand we extract 
surrounding context of entity to enrich entity encoding. The surrounding context of entity will 
further be utilized by Memory Network to support graph reasoning. Experimental evaluation shows 
CEG achieves competitive performance on the QAngaroo WIKIHOP dataset, and the following 
ablation test demonstrates our proposed context extraction modules are effective in multi-hop 
reading comprehension. 

1. Introduction 
Machine Reading Comprehension (MRC) requires the model to answer a natural language 

question given relevant context. The advent of large-scale datasets, such as SQuAD[1] and 
CNN/Daily mail[2], greatly promotes the development of the field. Many end-to-end deep neural 
models such as BiDAF[3] and SAN[4] are constructed to tackle the problem, achieving great success 
especially after the release of the BERT[5]. But the challenge still remains, many of these datasets 
are specified to single-hop reading comprehension, in which the answer can be concluded by only 
reading a single paragraph or sentence. While in many real scenarios, people have to reason across 
multiple documents in order to find the answer.  

The WIKIHOP[6] dataset was proposed exactly to meet the above challenge. Each sample in 
WIKIHOP contains multiple supporting documents, and the goal is to select the correct answer in a 
set of candidates for a query. The dataset is carefully constructed to ensure that most queries cannot 
be answered by only reading a single document. Multi-step reasoning chains across documents are 
needed to find the correct answer which poses great challenge for previous models. Some baseline 
models such as BiDAF[3] and DCN[7], which have fine performance in single-hop MRC tasks, 
suffer dramatic accuracy decline in this task. 

In this paper, we propose a multi-hop MRC model, named Context based Entity Graph 
Convolutional Network (CEG). Based on graph convolutional network (GCN), the model performs 
graph reasoning to learn relation-aware representation of nodes. There are two types of nodes in 
graph, entity nodes and candidate nodes. Entity nodes are mentions of candidate nodes which are 
extracted from supporting documents. Attention mechanism is utilized to attend query information 
into nodes. To encode rich context information, multi-granularity encodings are applied. 
Furthermore, entity nodes are coupled with supporting context which will be utilized by Memory 
Network to support graph reasoning. 

Experimental results demonstrate that CEG achieves competitive performance on the WIKIHOP 
dataset. Ablation test also shows CEG benefits from rich contextual encoding, attention mechanism 
and graph convolutional network. 

Our contributions in this work are as follows: 
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Utilizing multi-granularity encodings to acquire context information at different level. 
Extracting surrounding context of entity nodes to make full use of context information in 

supporting documents. 
Applying Memory Network to extract relevant context information of nodes to support graph 

reasoning. 

2. Related Work 
Recently, graph-based models are proved to be efficient in the task of multi-hop MRC. MHQA-

GRN[8] and Entity-GCN[9] are the first attempts in this direction. They extract entities from 
documents to make entity graph. Then multi-hop reasoning is processed between document nodes to 
learn complex relationship among entities so as to derive relational information for answering the 
query. BAG[10] introduces a new bi-directional attention which encodes mutual information 
between graph nodes and query. CFC[11] uses co-attention and self-attention to do coarse and fine 
reasoning in documents without using graph. HDE[12] proposes heterogeneous document-entity 
graph which contains different types of query-aware nodes representing different granularity levels 
of information. 

The models above can be divided into two categories. One utilizes only nodes information using 
pretrained contextual embedding such as ELMo[13]. Entity-GCN and BAG fall into this category. 
The other makes use of full document context followed by attention to extract relevant information. 
These models tend to use simple word embedding such as GLoVe[14] considering  training  cost.   
CFC  and  HDE  are  representative models in this category. Our model differs from those models in  
that it stands in the middle of the two categories and combines the advantages of them. On the one 
hand, the pretrained BERT embedding is applied due to the superior performance in contextual 
encoding. Note that BERT embedding is limited to query, entities and candidates due to memory 
limits. The BERT embedding is generated in offline step which does not effect the efficiency of 
online training. On the other hand, we extract nodes surrounding tokens as supporting context. The 
supporting context will be used by memory network to enrich node encoding. 
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Fig. 1. Framework of CEG model. Red dash lines apply for first layer in GCN, blue dash dot lines 

apply for other layers. 

3. Model 
We first introduce the task of WIKIHOP[6] dataset. A sample comprises of a query, a set of 

supporting documents and a set of candidate answers. The query is in form of (s, r, ?) which 
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represents subject, relation and unknown object respectively. The dataset is created to guarantee the 
unknown query object and candidate answers are entities in supporting documents. In fact, there is at 
least one reasoning chain which starts from the query subject and runs through several candidates 
between documents to arrive at the final answer. The goal of the model is to find the right answer in 
candidates through document reasoning. 

The proposed CEG model are shown in Fig. 1. It can be categorized into four parts: (A) 
contextual encoding, (B) graph construction and reasoning, (C) memory network based contextual 
extraction, (D) output layer. 

3.1. Contextual encoding 
Entity extraction. In multi-hop reading comprehension scenarios, multiple documents are required 

to answer a query. Simply concatenating the documents and applying a previous neural MRC model 
does not achieve promising performance yet with enormous resource costs. Graph models are based 
on entity nodes which do not require the full document context. As mentioned above, query answer 
is in candidate set and candidates are entities in documents. A simple string matching heuristic is 
used to find candidate mentioned in documents as entity nodes. Now that we have the start and end 
position of every entity node in its corresponding supporting document, surrounding tokens around 
the entity node mention are extracted as supporting context for the entity node. Finally, a set of entity 
nodes are obtained. For entity node i, we define the node content as ei, the node supporting context 
as si, together they make up the whole context wi. The length of the whole context wi is fixed which 
defined as lw and the length of surrounding tokens on both sides should keep consistent if condition 
allows, so that context information from forward direction and backward direction can both be 
acquired. 

Multi-granularity context encoding. MRC tasks require the model to gather context information to 
have a thorough understanding of documents and query, so we apply multi-granularity encoding 
trying to capture context information at different level. First, the pretrained word embedding 
GLoVe[14] is used to represent tokens at word level. Then we apply character ngram vectors[15] to 
encode tokens at character level which also offset the low word coverage of GLoVe. Moreover, a 
strong pretrained model BERT[5] is utilized to acquire rich contextual encoding. 

For query q, glove, char and bert embedding matrix are concatenated as Xq ∈ ℝlq×dq where lq is 
the length of query tokens and dq = dglove + dchar + dbert . Then bidirectional recurrent neural 
network (RNN) with gated recurrent unit (GRU) is applied to encode the contextual information in 
query. The output is Hq ∈ ℝlq×h , where h  denotes the output dimension of RNN encoder. For 
candidate node c, similar method is applied to get Hc ∈ ℝlc×h where lc is the length of candidate 
node tokens. For entity node e and entity node supporting context s, glove and char embedding 
matrix of the whole context w are concatenated as Xw ∈ ℝlw×dw  where lw is the length of whole 
context and dw = dglove + dchar. We also use BiGRU to encode the whole context to get Hw ∈
ℝlw×h , then split it into Te ∈ ℝle×h  and Hs ∈ ℝls×h . le  and ls  represent the length of entity node 
tokens and the length of entity node supporting context tokens respectively, and le + ls = lw . It 
should be noted that BERT embedding for entity node Be ∈ ℝle×dbert is calculated based on original 
documents, then extracted according to the position indices of the node tokens. Due to resource 
limits, BERT embedding for entity nodes supporting context is not used. Be and Te are concatenated 
column-wise and transformed into He ∈ ℝle×h  via a 1-layer linear network. At last, we get 
contextual encoding Hq , He , Hs , Hc  for query, entity node, entity node supporting context and 
candidate node respectively. 

Co-attention. Co-attention is widely used in single-hop reading comprehension tasks. Recently it 
was applied to multi-hop reading comprehension. It is responsible for generating mutual information 
between query and entity nodes (entity nodes supporting context or candidate nodes). Take a query 
and a entity node for illustration. Co-attention combines learned query contextual information 
attended by entity node and entity node contextual information attended by query. 

Given RNN encoded sequences of a query Hq ∈ ℝlq×h  and a entity node He ∈  ℝle×h . The 
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similarity matrix between query and entity node is calculated via 

 Aqe = He�Hq�
T ∈  ℝle×lq  (1) 

Then the attended entity node and query can be derived by 

  Se = softmax(Aqe)Hq ∈ ℝle×h  (2) 

  Sq = softmax(Aqe
T )Hn ∈ ℝlq×h (3) 

where softmax(⋅) represents column-wise normalization. Next the attended query is further co-
attended followed by a linear projection: 

  Re = MLP(softmax�Aqe�Sq) ∈ ℝle×h (4) 

MLP(∙) is a one-layer MLP with tanh activation. The final co-attention context can be obtained 
via 

 Ze = MLP(concat(He, Se, He ∘ Se, He ∘ Re)) ∈ ℝle×h  (5) 

where MLP(∙)  is a one-layer MLP with tanh activation. concat(∙)  stands for column-wise 
concatenation. The operator ∘ is element-wise multiplication. 

The co-attended context Ze is expected to carry query-aware contextual information of the entity 
node. Similar method can be applied to query and entity nodes supporting context, and query and 
candidate nodes to get Zs and Zc. 

Self-attention. Self-attention performs context summarization by calculating a normalized score 
for every token in the context and compute a weighted sum over the context encoding. In entity 
graph, node should be a fixed-length non-sequential vector while co-attended context is sequential. 
So self-attention is applied to summarize the co-attention output of entity nodes and candidate nodes. 
Formally, given Ze as input, the self-attention can be formulated as 

  ae = softmax(MLP(Ze)) ∈ ℝle×1 (6) 

  ze = ZeTae ∈ ℝh  (7) 

where MLP(∙) is a two-layer MLPs with tanh activation. The hidden layer size is half of the input 
dimension, and the output dimension is 1. The output ze  provides a summary of co-attended 
sequential vector Ze. Similarly, we can get candidate node summary zc using self-attention. 
3.2. Graph construction and reasoning 

Graph construction. Graph is made up of nodes and edges. The graph is undirected so that the 
information can be propagated in both directions. There are two types of nodes in graph: entity nodes 
and candidate nodes. Entity nodes are mentions of candidates from documents. Inspired by HDE[12], 
we add candidate nodes to gather and summarize information from different entity nodes of the same 
mention. For edge connections, different types of edges are defined to encode various structural 
information in the graph: 

1) Entity node pair of different mentions are connected if they are extracted from the same 
document. 

2) Entity node pair of the same mention are connected if they are extracted from different 
documents. 

3) An entity node and a candidate node are connected if the entity node is a mention of the 
candidate node. 

4) All candidate nodes connect with each other. 
5) Entity nodes that do not meet the previous conditions are connected. 
Message passing. Relational Graph Convolutional Network (R-GCN)[16] is applied to propagate 

message across graph nodes and generates relational representations of nodes. R-GCN has multiple 
layers which correspond to multi-hop graph reasoning. Nodes can aggregate message passed from 
neighboring nodes, and a message is specific to a certain edge type (also referred as relation). At first 
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layer, we initialize the self-attention output as node representation oi1. Then, at lth layer, we use 
memory network to extract relevant context information (described in next section) for entity node, 
which will be concatenated with raw entity node representation to form new node representation. 
Candidate node representation remains unchanged: 

 gil = �
fs �concat �oil, MN�Zs, oil���  i is entity node

oil                                            i is candidate node
   (8) 

gil ∈ ℝh  is new node representation for node i at lth layer. MN(∙) stands for memory network 
which will be introduced in next section. Zs is supporting context for entity node i which is generated 
in co-attention and keeps constant during graph reasoning. fs represents linear transformation to keep 
node dimension constant. h is node vector dimension.  

After obtaining node representation, R-GCN performs aggregation to gather information from 
neighbors of each node, then combines node information to generate update information. The 
process can be formulated as 

  uil = W0
lgil + ∑ 1

�𝒩𝒩i
r�
∑ Wr

lgjlj∈𝒩𝒩i
rr∈ℛ   (9) 

where ℛ is the set of all edge types and 𝒩𝒩i
r is the set of indices of the neighboring nodes that 

share type r edge connection with node i. The symbol |∙| denotes size of a set. Wr
l ∈ ℝd×d  is a 

weight matrix specific to edge type. W0
l ∈ ℝd×d applies linear transformation the node representation. 

To avoid smoothing problem in GNN[17], a gating mechanism is applied to control the amount of 
update information that should propagate to the next hop: 

  pil = σ(fg(�gil, uil�)  (10) 

where σ(∙) is sigmoid function and fg is linear transformation. The symbol [∙,∙] denotes column-
wise concatenation. Finally, the node representation in the next layer is defined as gated combination 
of a non-linear transformed update message and the previous representation: 

  oil+1 = pil ∘ tanh�uil� + �1 − pil� ∘ gil  (11) 

where ∘ denotes element-wise multiplication. It should be noted that all parameters are shared 
layer to layer in order to decrease model complexity. 

3.3. Memory network based contextual extraction 
Memory network stores knowledge source in memory, and uses a state vector to extract relevant 

information from source to support further reasoning. Miller et al.[18] apply Key-Value Memory 
Network to perform QA. Inspired by their work, we apply memory network to extract contextual 
information that cannot be directly encoded in nodes representation. 

Knowledge source stored in memory is the entity node supporting context Zs, state vector is the 
raw entity node representation o. Note that in every step of graph reasoning, memory network 
module will be performed for every entity node simultaneously, so we ignore superscript l and 
subscript i in oil which indicates the representation of entity node i in lth layer. 

Key addressing. Key and value are both Zs in our memory network. During key addressing, each 
word in the supporting context is assigned a relevance probability by comparing each word to the 
state vector: 

  p = softmax(Zso)  (12) 
Value reading. Value reading result is the weighted sum of memory value using key addressing 

probability: 

  m = ZsTp   (13) 
The whole memory network module can be denoted as 
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  MN(Zs, o) → m   (14) 
3.4. Output layer 

After graph reasoning, final representation of entity nodes and candidate nodes are obtained. Note 
that entity node is mention of corresponding candidate node in original document. The candidate 
score is calculated via 

   p = softmax(fC(OC) + cmax (fE(OE)))      (15) 

where OC ∈ ℝNC×h  is the final representation of candidate nodes and NC  is the number of 
candidates. OE ∈ ℝNE×h is the final representation of entity nodes and NE is the number of entity 
nodes. cmax (∙) is defined to take the max score over entity nodes that belong to the same candidate. 
fC  and fE  are two-layer MLPs with tanh activation. The hidden layer size is half of the input 
dimension, and the output dimension is 1. Candidate node score and entity node score are summed as 
final candidate score. Softmax is then applied to generate the probability distribution which indicates 
the probability of each candidate becoming the answer. The loss function is defined as the cross 
entropy between one-hot answer vector and the predicted probability. 

4. Experiment 
We use only the unmasked version of the WIKIHOP dataset. There are 43738 samples in the 

training set, 5129 samples in the development set and 2451 samples in the test set. The test set is not 
public so the model will be evaluated blindly. 

In the experiment, we use base-cased BERT pretrained model and generate 768-dimensional 
embedding for query, entities and candidates offline. Besides, 300-dimensional GLoVe embedding 
and 100-dimensional character n-gram embedding are used to encode entity supporting context, 
query and candidates. The encoding size h is 200. The length of whole context is fixed as 64. The 
number of GCN layer is set as 5. In addition, dropout with rate 0.2 is applied before attention and 
before graph reasoning. We use Adam as optimizer. The learning rate is initialized as 2 × 10−4 
which will be halved for every 5 epochs. We train the model for 20 epochs. 

Table 1 The performance of different models on WIKIHOP dataset 

Model Accuracy(%) 
Dev Test 

BiDAF - 42.9 
Entity-GCN 64.8 67.6 
CFC 66.4 70.6 
BAG 66.5 69.0 
HDE 68.1 70.9 
Our Model 69.6 73.6 

As shown in Table 1, the proposed CEG model achieves competitive performance compared to 
the previously published models. It is much better than the baseline BiDAF[7] model presented in 
the WIKIHOP paper. Compared to the previous graph-based models such as Entity-GCN[10], 
BAG[11] and HDE[13], CEG surpasses them by a large margin. Note that the accuracy improvement 
in test set is more substantial than in development set, proving the robustness of the model. 

Table 2 Ablation results on WIKIHOP dev set 

Model Accuracy (%) 
Dev ∆ 

Full Model 69.6  
- BERT 66.8 2.8 
- GLoVe & Char 68.6 1.0 
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Model Accuracy (%) 
Dev ∆ 

- Entity node context 67.1 2.5 
- Candidate nodes 68.4 1.2 
- Attention 66.9 2.7 
- GCN 64.7 4.9 

Ablation results are shown in Table 2. First, we verify the effectiveness of two context encoding 
methods we propose. Without BERT embedding and GLoVe&Char embedding, the accuracy on 
WIKIHOP development set drops 2.8% and 1.0% respectively. This indicates the efficiency of 
multi-granularity encoding. If we do not use entity node context, the accuracy shows 2.5% absolute 
drop. The results above prove the contextual information is vital for reasoning.  

Then, we investigate the effect of other modules in CEG model. Once the candidate nodes are 
removed, the accuracy has 1.2% drop. We suspect it is because candidate nodes can gather 
information from the entity nodes of the same mention, it performs as a sort of summarization which 
can improve model performance. If the attention is replaced by concatenation of query and nodes 
(nodes context), the model performance is dropped by 2.7%, which reflects the importance of 
attention mechanism. If GCN is removed and the output of self-attention is directly used in output 
layer, the accuracy drops 4.9%. It is the largest drop in ablation test, which indicates the GCN plays 
fundamental roles in the model. 

5. Conclusion 
A graph-based model CEG is proposed for multi-hop reading comprehension which focuses on 

making more use of context information from documents. To achieve the goal, two main methods 
are applied. One is using multi-granularity embedding to acquire encoding at different level, and the 
strong contextual embedding BERT is utilized in this model. The other is to extract supporting 
context for entity nodes in documents which is used as source for memory network to generate 
context information to support reasoning. The experimental results demonstrate the effectiveness of 
the two proposed methods, and the model achieves competitive performance in WIKIHOP dataset. 
In the future, we would like to further investigate more powerful ways to encode the context 
information into graph nodes, and try to apply the methods to other tasks in MRC. 
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