Education, Science, Technology, Innovation and Life
Open Access
Sign In

A Novel Synthesis of the NAMPT Inhibitor FK866

Download as PDF

DOI: 10.23977/analc.2023.020117 | Downloads: 11 | Views: 270

Author(s)

Peifeng Zhang 1, Defeng Xu 1

Affiliation(s)

1 School of Pharmacy, Changzhou University, Changzhou, 213164, China

Corresponding Author

Defeng Xu

ABSTRACT

In this article, we report a safe and high-yield synthesis method for the NAMPT inhibitor FK866, which avoids the use of flammable lithium aluminum hydride and highly toxic sodium azide, and the synthesis of key intermediates by the Gabrielle synthesis method to construct the amino group in 33% total reaction yield, which is a twofold increase in yield compared with existing synthesis methods, and enhances the safety of the synthesis method. Nicotinamide adenine dinucleotide (NAD) is an important cofactor in life's energy metabolism, regulating redox-related proteins such as cellular respiration, glycolysis, citric acid cycle, cell communication, transcriptional regulation, post-translational protein modification, and oxidative phosphorylation in cellular respiration. NAD is a core coenzyme of metabolism, mainly involved in redox reactions, but also in post-translational modifications to regulate DNA damage responses or gene expression, as a substrate for poly ADP ribose polymerase (PARP) and deacetylating Sirtuins. In cells, a specific set of synthases regulates the three major biosynthetic pathways of NAD, including the quinolinic acid phosphotransferase (QAPRT)-mediated ab initio synthesis, the nicotinic acid phosphoribosyltransferase (NAPRT)-mediated preprocessor (PH) synthesis pathway, and the NAMPT-mediated salvage pathway. Therefore, enzymes involved in NAD metabolism are attractive targets for drug discovery.

KEYWORDS

NAMPT inhibitor, FK866, synthesis method

CITE THIS PAPER

Peifeng Zhang, Defeng Xu, A Novel Synthesis of the NAMPT Inhibitor FK866. Analytical Chemistry: A Journal (2023) Vol. 2: 131-137. DOI: http://dx.doi.org/10.23977/analc.2023.020117.

REFERENCES

[1] S. Chowdhry, Zanca C., Rajkumar U., Koga T., Diao Y., Raviram R., Liu F., Turner K., Yang H., Brunk E., Bi J., Furnari F., Bafna V., Ren B.Mischel P. S. (2019). NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling. Nature. vol.569, no.(7757), p.570-575.
[2] L. Liu, Su X., Quinn W. J., 3rd, Hui S., Krukenberg K., Frederick D. W., Redpath P., Zhan L., Chellappa K., White E., Migaud M., Mitchison T. J., Baur J. A.Rabinowitz J. D. (2018). Quantitative Analysis of NAD Synthesis-Breakdown Fluxes. Cell Metab. vol.27, no.(5), p.1067-1080.e5.
[3] J. A. Khan, Forouhar F., Tao X.Tong L. (2007). Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Expert Opin Ther Targets. vol.11, no.(5), p.695-705.
[4] S. ImaiGuarente L. (2014). NAD+ and sirtuins in aging and disease. Trends Cell Biol. vol.24, no.(8), p.464-471.
[5] E. S. Burgos (2011). NAMPT in regulated NAD biosynthesis and its pivotal role in human metabolism. Curr Med Chem. vol.18, no.(13), p.1947-1961.
[6] T. ZhangKraus W. L. (2010). SIRT1-dependent regulation of chromatin and transcription: linking NAD(+) metabolism and signaling to the control of cellular functions. Biochim Biophys Acta. vol.1804, no.(8), p.1666-1675.
[7] Q. JiangGreenberg R. A. (2015). Deciphering the BRCA1 Tumor Suppressor Network. J Biol Chem. vol.290, no.(29), p.17724-17732.
[8] E. H. Hong, Yun H. S., Kim J., Um H. D., Lee K. H., Kang C. M., Lee S. J., Chun J. S.Hwang S. G. (2011). Nicotinamide phosphoribosyltransferase is essential for interleukin-1beta-mediated dedifferentiation of articular chondrocytes via SIRT1 and extracellular signal-regulated kinase (ERK) complex signaling. J Biol Chem. vol.286, no.(32), p.28619-28631.
[9] P. R. Martin, Shea R. J.Mulks M. H. (2001). Identification of a plasmid-encoded gene from Haemophilus ducreyi which confers NAD independence. J Bacteriol. vol.183, no.(4), p.1168-1174.
[10] D. HanahanWeinberg R. A. (2011). Hallmarks of cancer: the next generation. Cell. vol.144, no.(5), p.646-674.
[11] T. B. Dahl, Holm S., Aukrust P.Halvorsen B. (2012). Visfatin/NAMPT: a multifaceted molecule with diverse roles in physiology and pathophysiology. Annu Rev Nutr. vol.32, p.229-243.
[12] X. Lv, Zhang L., Zhu Y., Said H. M., Shi J.Xu G. (2015). Regulative Effect of Nampt on Tumor Progression and Cell Viability in Human Colorectal Cancer. J Cancer. vol.6, no.(9), p.849-858.
[13] A. Lucena-Cacace, Umeda M., Navas L. E.Carnero A. (2019). NAMPT as a Dedifferentiation-Inducer Gene: NAD(+) as Core Axis for Glioma Cancer Stem-Like Cells Maintenance. Front Oncol. vol.9, p.292.
[14] E. A. Ostrakhovitch, Akakura S., Sanokawa-Akakura R., Goodwin S.Tabibzadeh S. (2015). Dedifferentiation of cancer cells following recovery from a potentially lethal damage is mediated by H2S-Nampt. Exp Cell Res. vol.330, no.(1), p.135-150.
[15] E. A. Turbat-Herrera, Kilpatrick M. J., Chen J., Meram A. T., Cotelingam J., Ghali G., Kevil C. G., Coppola D.Shackelford R. E. (2018). Cystathione β-Synthase Is Increased in Thyroid Malignancies. Anticancer Res. vol.38, no.(11), p.6085-6090.
[16] K. Holen, Saltz L. B., Hollywood E., Burk K.Hanauske A. R. (2008). The pharmacokinetics, toxicities, and biologic effects of FK866, a nicotinamide adenine dinucleotide biosynthesis inhibitor. Invest New Drugs. vol.26, no.(1), p.45-51.
[17] U. H. Olesen, Thougaard A. V., Jensen P. B.Sehested M. (2010). A preclinical study on the rescue of normal tissue by nicotinic acid in high-dose treatment with APO866, a specific nicotinamide phosphoribosyltransferase inhibitor. Mol Cancer Ther. vol.9, no.(6), p.1609-1617.

Downloads: 531
Visits: 19744

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.