Education, Science, Technology, Innovation and Life
Open Access
Sign In

Hybrid Quantum-Classical Computing for Physical Problems: Architectures, Algorithms, and Applications in the Networked Era

Download as PDF

DOI: 10.23977/jnca.2025.100109 | Downloads: 7 | Views: 249

Author(s)

Baixin Pan 1

Affiliation(s)

1 The University of Hong Kong, Hong Kong, China

Corresponding Author

Baixin Pan

ABSTRACT

This report provides a comprehensive analysis of hybrid quantum-classical computing's role in addressing complex physical problems. It delineates the foundational principles of both classical and quantum paradigms, explores advanced architectural models and integration strategies, and details the application of cutting-edge quantum algorithms—including Variational Quantum Eigensolver (VQE), Quantum Phase Estimation (QPE), and Quantum Approximate Optimization Algorithm (QAOA)—alongside classical numerical methods such as Finite Element Method (FEM) and Finite Difference Method (FDM). Through a review of real-world case studies in materials science, chemistry, fluid dynamics, and high-energy physics, the report illustrates the transformative potential of this synergistic approach. Furthermore, it critically examines the prevailing challenges, encompassing hardware limitations, quantum error correction, software-hardware co-design, scalability, and data handling complexities, while forecasting the convergence with exascale computing. The aim is to elucidate the current state and future trajectory of hybrid quantum-classical computing as a pivotal tool for scientific discovery and engineering innovation in the networked era.

KEYWORDS

Hybrid Quantum-Classical Computing, Physical Problems, Quantum Algorithms, High-Performance Computing, Quantum Error Correction, Computational Physics, Materials Science, Fluid Dynamics, High-Energy Physics, Optimization

CITE THIS PAPER

Baixin Pan, Hybrid Quantum-Classical Computing for Physical Problems: Architectures, Algorithms, and Applications in the Networked Era. Journal of Network Computing and Applications (2025) Vol. 10: 70-80. DOI: http://dx.doi.org/10.23977/jnca.2025.100109.

REFERENCES

[1] Arora, S., & Barak, B. (2009). Computational complexity: A modern approach. Cambridge University Press.
[2] Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics, 38(8), 114–117.
[3] Shalf, J. (2020). The future of computing beyond Moore's Law. Philosophical Transactions of the Royal Society A, 378(2166). https://doi.org/10.1098/rsta.2019.0061
[4] Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman.
[5] Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information: 10th anniversary edition. Cambridge University Press.
[6] Deutsch, D., & Jozsa, R. (1992). Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 439(1907), 553–558. https://doi.org/10.1098/rspa. 1992. 0167
[7] Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., & O'Brien, J. L. (2010). Quantum computers. Nature, 464(7285), 45–53. https://doi.org/10.1038/nature08812
[8] Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6-7), 467–488. https://doi.org/10.1007/BF02650179
[9] Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79
[10] Bharti, K., Cervera-Lierta, A., Kyriienko, O., et al. (2022). Noisy intermediate-scale quantum algorithms. Reviews of Modern Physics, 94(1), 015004. https://doi.org/10.1103/RevModPhys.94.015004
[11] Fowler, A. G., Mariantoni, M., Martinis, J. M., & Cleland, A. N. (2012). Surface codes: Towards practical large-scale quantum computation. Physical Review A, 86(3), 032324. https://doi.org/10.1103/PhysRevA.86.032324
[12] Moll, N., Barkoutsos, P., Bishop, L. S., et al. (2018). Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology, 3(3), 030503. https://doi.org/10.1088/2058-9565/aab822
[13] Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J., Aspuru-Guzik, A., & O’Brien, J. L. (2014). A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5, 4213. https://doi. org/10. 1038/ncomms5213
[14] Endo, S., Cai, Z., Benjamin, S. C., & Yuan, X. (2021). Hybrid quantum-classical algorithms and quantum error mitigation. Journal of the Physical Society of Japan, 90(3), 032001. https://doi.org/10.7566/JPSJ.90.032001
[15] Bauer, C. W., de Jong, W. A., Nachman, B., & Provasoli, D. (2020). Quantum algorithms for high energy physics. arXiv preprint arXiv:2001.03488. https://arxiv.org/abs/2001.03488
[16] Lubinski, T., Johri, S., Varner, P., et al. (2021). Calibrating and benchmarking a superconducting quantum annealing system. arXiv preprint arXiv:2102.04207. https://arxiv.org/abs/2102.04207
[17] Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science (pp. 124–134). https://doi.org/10.1109/SFCS.1994.365700
[18] Harrigan, M. P., Sung, K. J., Neeley, M., et al. (2021). Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nature Physics, 17, 332–336. https://doi.org/10.1038/s41567-020-01105-y
[19] Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3), 715–775. https://doi.org/10.1103/RevModPhys.75.715
[20] LaRose, R. (2019). Overview and comparison of gate level quantum software platforms. Quantum, 3, 130. https://doi.org/10.22331/q-2019-03-25-130
[21] Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The finite element method: Its basis and fundamentals (6th ed.). Butterworth-Heinemann.
[22] LeVeque, R. J. (2007). Finite difference methods for ordinary and partial differential equations: Steady-state and time-dependent problems. SIAM. https://doi.org/10.1137/1.9780898717839
[23] McCaskey, A. J., Dumitrescu, E. F., Chen, M., Ly, D. T., & Li, Y. (2020). A language and runtime for hybrid quantum-classical computing in HPC environments. In 2020 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS) (pp. 48-57). https://doi.org/10.1109/QCS51206.2020.00015
[24] Fu, X., Riesebos, L., Lao, L., et al. (2019). A heterogeneous quantum computer architecture. In 2019 IEEE International Conference on Rebooting Computing (ICRC) (pp. 1-10). https://doi.org/10.1109/ICRC.2019.00008
[25] McCaskey, A. J., Claudino, D., Dumitrescu, E. F., et al. (2022). A case for hybrid quantum-classical computing for materials science. Philosophical Transactions of the Royal Society A, 380(2219). https://doi.org/10.1098/rsta.2021.0065

Downloads: 1640
Visits: 157103

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.