Evaluating Cognitive Flexibility in Non-Human Primates under Ongoing Anthropogenic Environmental Changes
DOI: 10.23977/erej.2025.090119 | Downloads: 8 | Views: 867
Author(s)
Kaitlyn Song Zhang 1, Kathleen Griffin 1
Affiliation(s)
1 The Country Day School, 13415 Dufferin St, King City, ON L7B 1K5. Aurora, Canada
Corresponding Author
Kathleen GriffinABSTRACT
This paper examines how non-human primates (NHPs) use cognitive abilities to adapt their behaviour in changing environments. It is argued that while NHPs have developed cognitive adaptations to cope with resource loss, these abilities may be insufficient to counter ongoing population declines driven by human and environmental threats, such as deforestation and climate change. Simians, which are more social and active during the day, show a high level of cognitive flexibility, allowing them to respond to changes in food sources, seasonal shifts, and social interactions. Prosimians, on the other hand, tend to be nocturnal and solitary, relying more on biological traits such as enhanced senses, flexible diets, and spatial memory to survive in areas with limited resources. Despite these adaptations, both groups face growing threats from climate change, habitat loss, and other human activities. This study also points out gaps in current research, especially on wild and prosimian populations, which limits our understanding of how cognition may help NHPs survive in changing environments. To protect vulnerable primate species and their habitats, it is crucial to prioritise research and conservation efforts. This paper concludes that while NHPs have developed ways to cope with their surroundings, these skills are likely not enough to protect them from today's fast-changing environment.
KEYWORDS
Primates, Cognitive Abilities, Adaptation, Behaviour, Protection, Environmental ChangesCITE THIS PAPER
Kaitlyn Song Zhang, Kathleen Griffin, Evaluating Cognitive Flexibility in Non-Human Primates under Ongoing Anthropogenic Environmental Changes. Environment, Resource and Ecology Journal (2025) Vol. 9: 163-172. DOI: http://dx.doi.org/10.23977/erej.2025.090119.
REFERENCES
[1] How Primates Differ From Non-Primates. (n.d.). VEDANTU. https://www.vedantu.com/biology/how-primates-differ-from-non-primates
[2] Buchanan, K. L., Grindstaff, J. L., & Pravosudov, V. V. (2013). Condition dependence, developmental plasticity, and cognition: implications for ecology and evolution. Trends in Ecology & Evolution, 28(5), 290–296. https://doi. org/10. 1016/j.tree.2013.02.004
[3] Scientific Committee on Health and Environmental Risks (SCHER). The Need for Non-Human Primates in Biomedical Research, Production and Testing of Products and Devices. Brussels: European Commission; 2009.
[4] Estrada A, Garber PA, Rylands AB, Roos C, et al. Impending extinction crisis of the world’s primates: Why primates matter. Science Advances. 2017; 3(1):e1600946. https://doi.org/10.1126/sciadv.1600946
[5] Fernández, D., Kerhoas, D., Dempsey, A., Billany, J., McCabe, G., & Argirova, E. (2021). The Current Status of the World’s Primates: Mapping Threats to Understand Priorities for Primate Conservation. International Journal of Primatology. https://doi.org/10.1007/s10764-021-00242-2
[6] Janmaat, K. R. L., de Guinea, M., Collet, J., Byrne, R. W., Robira, B., van Loon, E., Jang, H., Biro, D., Ramos-Fernández, G., Ross, C., Presotto, A., Allritz, M., Alavi, S., & Van Belle, S. (2021). Using natural travel paths to infer and compare primate cognition in the wild. IScience, 24(4), 102343. https://doi.org/10.1016/j.isci.2021.102343
[7] Shultz, S., & Dunbar, R. I. M. (2022). Socioecological complexity in primate groups and its cognitive correlates. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1860). https://doi.org/10. 1098/rstb. 2021. 0296
[8] Coiner-Collier, S., Scott, R. S., Chalk-Wilayto, J., Cheyne, S. M., Constantino, P., Dominy, N. J., Elgart, A. A., Glowacka, H., Loyola, L. C., Ossi-Lupo, K., Raguet-Schofield, M., Talebi, M. G., Sala, E. A., Sieradzy, P., Taylor, A. B., Vinyard, C. J., Wright, B. W., Yamashita,N., Lucas, P. W., & Vogel, E. R. (2016). Primate dietary ecology in the context of food mechanical properties. Journal ofHuman Evolution, 98, 103–118. https://doi.org/10.1016/j.jhevol.2016.07.005
[9] Wildlife Conservation Society. Rare monkey adapts to fragmented habitat by dieting and reducing activity. ScienceDaily. 2022 Mar 17. Available from: https://www.sciencedaily.com/releases/2022/03/220317111854.htm
[10] Campos, F. A., Morris, W. F., Alberts, S. C., Altmann, J., Brockman, D. K., Cords, M., Pusey, A., Stoinski, T. S., Strier, K. B., & Fedigan, L. M. (2017). Does climate variability influence the demography of wild primates? Evidence from long-term life-history data in seven species. Global Change Biology, 23(11), 4907–4921.https://doi.org/10. 1111/gcb. 13754
[11] Brockman, D. K., & Schaik, van. (2005). Seasonality in Primates. In Cambridge University Press eBooks. https: //doi. org/10. 1017/cbo9780511542343
[12] Pontzer, H., Raichlen, D. A., Gordon, A. D., Schroepfer-Walker, K. K., Hare, B., O’Neill, M. C., Muldoon, K. M., Dunsworth, H. M., Wood, B. M., Isler, K., Burkart, J., Irwin, M., Shumaker, R. W., Lonsdorf, E. V., & Ross, S. R. (2014). Primate energy expenditure and life history. Proceedings of the National Academy ofSciences, 111(4), 1433–1437. https: //doi. org/10.1073/pnas.1316940111
[13] Allritz M, Call J, Schweller K, McEwen ES, de Guinea M, Janmaat KRL, et al. Chimpanzees (Pan troglodytes) navigate to find hidden fruit in a virtual environment. Science Advances. 2022;8(26):eabm4754. https://doi. org/10. 1126/sciadv. abm4754
[14] Dolins, F. L., Klimowicz, C., Kelley, J., & Menzel, C. R. (2014). Using virtual reality toinvestigate comparative spatial cognitive abilities in chimpanzees and humans. American Journal of Primatology, 76(5), 496–513. https://doi.org/10.1002/ajp.22252
[15] Marty, P. R., Hodges, K., Agil, M., & Engelhardt, A. (2016). Determinants of immigration strategies in male crested macaques (Macaca nigra). Scientific Reports, 6(1).
https://doi.org/10.1038/srep32028
[16] Novak, M. A., Hamel, A. F., Kelly, B. J., Dettmer, A. M., & Meyer, J. S. (2013). Stress, the HPA axis, and nonhuman primate well-being: A review. Applied Animal Behaviour Science, 143(2-4), 135–149. https://doi.org/10. 1016/j. applanim.2012.10.012
[17] Setchell, J. M., Smith, T., Wickings, E. J., & Knapp, L. A. (2010). Stress, social behaviour, and secondary sexual traits in a male primate. Hormones and Behavior, 58(5), 720–728.
[18] Lambert, J. E. (2012). Primates in communities: The ecology of competitive, predatory, parasitic, and mutualistic interactions between primates and other species. Nature Education Knowledge, 3(10), 85. https://www.nature. com/scitable/knowledge/library/primates-in-communities-the-ecology-of-competitive-59119961/
[19] Williams, K. A., Slater, H. D., Gillingham, P., & Korstjens, A. H. (2021). Environmental Factors Are Stronger Predictors of Primate Species’ Distributions Than Basic Biological Traits. International Journal of Primatology, 42(3), 404–425. https://doi.org/10.1007/s10764-021-00208-4
[20] Rivera-Estay, V., Córdova-Lepe, F., Moreno-Gómez, F. N., Benitez, H., & Gutiérrez, R. (2024). Exploring the effects of competition and predation on the success of biological invasion through mathematical modeling. Scientific Reports, 14(1), 4416. https://doi.org/10.1038/s41598-024-53344-1
[21] Koenig, A. (2002). Competition for Resources and Its Behavioral Consequences Among Female Primates. International Journal of Primatology, 23(4), 759–783. https://doi.org/10.1023/a:1015524931226
[22] Patterson, S. K., Strum, S. C., & Silk, J. B. (2021). Resource competition shapes female–female aggression in olive baboons, Papio anubis. Animal Behaviour, 176, 23–41. https://doi.org/10.1016/j.anbehav.2021.03.013
[23] Lemoine, S., Preis, A., Samuni, L., Boesch, C., Crockford, C., & Wittig, R. M. (2020). Between-Group Competition Impacts Reproductive Success in Wild Chimpanzees. Current Biology, 30(2), 312-318.e3. https://doi.org/10.1016/j. cub. 2019. 11.039
[24] Janmaat, K. R. L., Polansky, L., Ban, S. D., & Boesch, C. (2014). Wild chimpanzees plan their breakfast time, type, and location. Proceedings of the National Academy ofSciences, 111(46), 16343–16348. https://doi.org/10. 1073/pnas. 1407524111
[25] Primates, N. R. C. (US) C. on W.-B. of N. (1998). Prosimians. In www.ncbi.nlm.nih.gov.National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK232188/Rare Monkey Adapts to Fragmented Habitat by Dieting and Reducing Activity. (2022). Wcs.org. https://newsroom.wcs.org/News-Releases/articleType/ArticleView/articleId/17383/ Rare-Monkey-Adapts-to-Fragmented-Habitat-by-Dieting-and-Reducing-Activity. aspx
[26] MacLean, E. L., Merritt, D. J., & Brannon, E. M. (2008). Social complexity predicts transitive reasoning in prosimian primates. Animal Behaviour, 76(2), 479–486. https://doi.org/10.1016/j.anbehav.2008.01.025
[27] Mitchell, J. F., & Leopold, D. A. (2015). The marmoset monkey as a model for visual neuroscience. Neuroscience Research, 93, 20–46. https://doi.org/10.1016/j.neures.2015.01.008
[28] Fragaszy DM, Crast J. The ontogeny of tool use: Behavioural flexibility and social learning in capuchin monkeys. Behaviour. 2010;147(4):469-504. https://doi.org/10.1163/000579510X12629536366124
[29] Hladik CM, Charles-Dominique P, Petter JJ. Feeding strategies of five nocturnal prosimians in the dry forest of the west coast of Madagascar. In: Charles-Dominique P, et al., editors. Nocturnal Malagasy Primates. New York: Academic Press; 1980. p. 41-73.
[30] Ozgul, A., Fichtel, C., Paniw, M., & Kappeler, P. M. (2023). Destabilizing effect of climate change on the persistence of a short-lived primate. Proceedings of the National Academy of Sciences, 120(14). https://doi. org/10. 1073/pnas. 2214244120
[31] Lührs, M.-L., Dammhahn, M., Kappeler, P. M., & Fichtel, C. (2009). Spatial memory in the grey mouse lemur (Microcebus murinus). Animal Cognition, 12(4), 599–609. https://doi.org/10.1007/s10071-009-0219-y
[32] Fichtel, C. (2022). Cognition in wild lemurs. Current Opinion in Behavioral Sciences, 45,101135. https://doi. org/10. 1016/j.cobeha.2022.101135
[33] Graham TL, Matthews HD, Turner SE. A global-scale evaluation of primate exposure and vulnerability to climate change. International Journal of Primatology. 2016;37(2):158-174. https://doi.org/10.1007/s10764-016-9890-4
Downloads: | 5694 |
---|---|
Visits: | 379552 |
Sponsors, Associates, and Links
-
International Journal of Geological Resources and Geological Engineering
-
Big Geospatial Data and Data Science
-
Solid Earth and Space Physics
-
Environment and Climate Protection
-
Journal of Cartography and Geographic Information Systems
-
Offshore and Polar Engineering
-
Physical and Human Geography
-
Journal of Atmospheric Physics and Atmospheric Environment
-
Trends in Meteorology
-
Journal of Coastal Engineering Research
-
Focus on Plant Protection
-
Toxicology and Health of Environment
-
Geoscience and Remote Sensing
-
Advances in Physical Oceanography
-
Biology, Chemistry, and Geology in Marine
-
Water-Soil, Biological Environment and Energy
-
Geodesy and Geophysics
-
Journal of Structural and Quaternary Geology
-
Journal of Sedimentary Geology
-
International Journal of Polar Social Research and Review