Economic Impact and Management Strategies for Post-Weaning Diarrhea in Piglets: A Comprehensive Review
DOI: 10.23977/agrfem.2025.080118 | Downloads: 1 | Views: 158
Author(s)
Ziyu Yin 1, Feng Zhan 1,2, Kai Wei 1, Rongling Jia 1,2, Meng Li 3
Affiliation(s)
1 College of Veterinary Medicine and Engineering, Nanyang Vocational College of Agriculture, Nanyang, 473000, China
2 Henan Province Engineering Research Center of Biological Control and Green Stockbreeding, Nanyang Vocational College of Agriculture, Nanyang, 473000, China
3 Animal Husbandry Development Center of Nanyang, Nanyang, 473000, China
Corresponding Author
Meng LiABSTRACT
Contemporary swine production systems impose a critical developmental challenge through abrupt weaning at 21-35 days postpartum, triggering multidimensional stress axes that converge on gastrointestinal dysbiosis and neuroendocrine disruption. This ontogenic shock manifests as enterocyte apoptosis, tight junction protein degradation and pancreatic zymogen deletion, elevating preharvest mortality while inflating antimicrobial expenditures. Economic imperatives are driving innovation in microbial ecosystem engineering, with advanced interventions targeting hologenome optimization through two-phase nutritional. Strategies such as cross-breeding, energy supplements and liquid/dry creep feeding aim to promote intestinal maturation, immune and microbiota resilience. While feed additives such as probiotics, organic acids show promise, their variable efficacy and upfront costs necessitate tailored, context-specific combinations. For instance, hybrid breeding programs may reduce long-term health expenditures, whereas precision-formulated additives improved feed efficiency, lowering production costs per unit gain. Balancing immediate investment with long-term profitability remains critical, particularly as market demands for antibiotic-free pork incentivize sustainable, economically viable solutions.
KEYWORDS
Post-Weaning Diarrhea, Piglet, Economy, Management, StrategyCITE THIS PAPER
Ziyu Yin, Feng Zhan, Kai Wei, Rongling Jia, Meng Li, Economic Impact and Management Strategies for Post-Weaning Diarrhea in Piglets: A Comprehensive Review. Agricultural & Forestry Economics and Management (2025) Vol. 8: 130-135. DOI: http://dx.doi.org/10.23977/agrfem.2025.080118.
REFERENCES
[1] Han, X.; Hu, X.; Jin, W.; Liu, G. Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. Anim Nutr, 2024, 17, 188-207, doi:10.1016/j.aninu.2023.12.010.
[2] Leal, D.F.; de Paula, Y.H.; de Sousa Faria, C.B.; GAM, E.C.; Tavares, I.C.; de Souza Cantarelli, V. The effect of different weaning strategies on piglet growth, feed intake and gut health. Trop Anim Health Prod, 2024, 56, 279, doi:10.1007/s11250-024-04118-4.
[3] Fardisi, M.; Thelen, K.; Groenendal, A.; Rajput, M.; Sebastian, K.; Contreras, G.A.; Moeser, A.J. Early weaning and biological sex shape long-term immune and metabolic responses in pigs. Sci Rep, 2023, 13, 15907, doi:10.1038/s41598-023-42553-9.
[4] Zhang, Y.; Wang, S.; Hei, M.Y. Maternal separation as early-life stress: Mechanisms of neuropsychiatric disorders and inspiration for neonatal care. Brain Res Bull, 2024, 217, doi:10.1016/j.brainresbull.2024.111058.
[5] Tang, Q.; Lan, T.; Zhou, C.; Gao, J.; Wu, L.; Wei, H.; Li, W.; Tang, Z.; Tang, W.; Diao, H., et al. Nutrition strategies to control post-weaning diarrhea of piglets: From the perspective of feeds. Anim Nutr, 2024, 17, 297-311, doi:10.1016/j.aninu.2024.03.006.
[6] Renzhammer, R.; Vetter, S.; Dolezal, M.; Schwarz, L.; Kasbohrer, A.; Ladinig, A. Correction: Risk factors associated with post-weaning diarrhoea in Austrian piglet-producing farms. Porcine Health Manag, 2023, 9, 27, doi:10.1186/s40813-023-00322-0.
[7] Vangroenweghe, F.; Poulsen, K.; Thas, O. Supplementation of a beta-mannanase enzyme reduces post-weaning diarrhea and antibiotic use in piglets on an alternative diet with additional soybean meal. Porcine Health Manag, 2021, 7, 8, doi:10.1186/s40813-021-00191-5.
[8] Vondruskova, H.; Slamova, R.; Trckova, M.; Zraly, Z.; Pavlik, I. Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: a review. Vet Med-Czech, 2010, 55, 199-224, doi:10.17221/2998-Vetmed.
[9] Long, L.N.; Chen, J.S.; Zhang, Y.G.; Liang, X.; Ni, H.J.; Zhang, B.; Yin, Y.L. Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets. Plos One, 2017, 12, doi:ARTN e0182550 10.1371/journal.pone.0182550.
[10] Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med, 2018, 50, 1-9, doi:10.1038/s12276-018-0126-x.
[11] Bomba, L.; Minuti, A.; Moisa, S.J.; Trevisi, E.; Eufemi, E.; Lizier, M.; Chegdani, F.; Lucchini, F.; Rzepus, M.; Prandini, A., et al. Gut response induced by weaning in piglet features marked changes in immune and inflammatory response. Funct Integr Genomics, 2014, 14, 657-671, doi:10.1007/s10142-014-0396-x.
[12] Xiong, X.; Tan, B.; Song, M.; Ji, P.; Kim, K.; Yin, Y.; Liu, Y. Nutritional Intervention for the Intestinal Development and Health of Weaned Pigs. Front Vet Sci, 2019, 6, 46, doi:10.3389/fvets.2019.00046.
[13] Siracusa, F.; Schaltenberg, N.; Kumar, Y.; Lesker, T.R.; Steglich, B.; Liwinski, T.; Cortesi, F.; Frommann, L.; Diercks, B.P.; Bönisch, F., et al. Short-term dietary changes can result in mucosal and systemic immune depression. Nat Immunol, 2023, 24, 1473-+, doi:10.1038/s41590-023-01587-x.
[14] Thoo, L.; Noti, M.; Krebs, P. Keep calm: the intestinal barrier at the interface of peace and war. Cell Death Dis, 2019, 10, doi:ARTN 849 10.1038/s41419-019-2086-z.
[15] Xu, Q.; Jian, H.; Zhao, W.; Li, J.; Zou, X.; Dong, X. Early Weaning Stress Induces Intestinal Microbiota Disturbance, Mucosal Barrier Dysfunction and Inflammation Response Activation in Pigeon Squabs. Front Microbiol, 2022, 13, 877866, doi:10.3389/fmicb.2022.877866.
[16] Birchenough, G.M.; Johansson, M.E.; Gustafsson, J.K.; Bergstrom, J.H.; Hansson, G.C. New developments in goblet cell mucus secretion and function. Mucosal Immunol, 2015, 8, 712-719, doi:10.1038/mi.2015.32.
[17] Uddin, M.K.; Mahmud, M.R.; Hasan, S.; Peltoniemi, O.; Oliviero, C. Dietary micro-fibrillated cellulose improves growth, reduces diarrhea, modulates gut microbiota, and increases butyrate production in post-weaning piglets. Sci Rep, 2023, 13, 6194, doi:10.1038/s41598-023-33291-z.
[18] Ghosh, S.; Whitley, C.S.; Haribabu, B.; Jala, V.R. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell Mol Gastroenterol Hepatol, 2021, 11, 1463-1482, doi:10.1016/j.jcmgh.2021.02.007.
[19] Garcias, B.; Migura-Garcia, L.; Giler, N.; Martín, M.; Darwich, L. Differences in enteric pathogens and intestinal microbiota between diarrheic weaned piglets and healthy penmates. Vet Microbiol, 2024, 295, doi:10.1016/j. vetmic. 2024. 110162.
[20] Poulsen, A.R.; Jonge, N.; Nielsen, J.L.; Hojberg, O.; Lauridsen, C.; Cutting, S.M.; Canibe, N. Impact of Bacillus spp. spores and gentamicin on the gastrointestinal microbiota of suckling and newly weaned piglets. Plos One, 2018, 13, e0207382, doi:10.1371/journal.pone.0207382.
[21] Bekebrede, A.F.; Keijer, J.; Gerrits, W.J.J.; Boer, V.C.J. The Molecular and Physiological Effects of Protein-Derived Polyamines in the Intestine. Nutrients, 2020, 12, doi:10.3390/nu12010197.
[22] Wang, J.; Ji, H. Influence of Probiotics on Dietary Protein Digestion and Utilization in the Gastrointestinal Tract. Curr Protein Pept Sci, 2019, 20, 125-131, doi:10.2174/1389203719666180517100339.
[23] Chen, X.; Song, P.; Fan, P.; He, T.; Jacobs, D.; Levesque, C.L.; Johnston, L.J.; Ji, L.; Ma, N.; Chen, Y., et al. Moderate Dietary Protein Restriction Optimized Gut Microbiota and Mucosal Barrier in Growing Pig Model. Front Cell Infect Microbiol, 2018, 8, 246, doi:10.3389/fcimb.2018.00246.
[24] Ren, Z.; Fan, H.; Deng, H.; Yao, S.; Jia, G.; Zuo, Z.; Hu, Y.; Shen, L.; Ma, X.; Zhong, Z., et al. Effects of dietary protein level on small intestinal morphology, occludin protein, and bacterial diversity in weaned piglets. Food Sci Nutr, 2022, 10, 2168-2201, doi:10.1002/fsn3.2828.
[25] Muniyappan, M.; Shanmugam, S.; Park, J.H.; Han, K.; Kim, I.H. Effects of fermented soybean meal supplementation on the growth performance and apparent total tract digestibility by modulating the gut microbiome of weaned piglets. Sci Rep, 2023, 13, 3691, doi:10.1038/s41598-023-30698-6.
[26] Cao, S.; Hou, L.; Sun, L.; Gao, J.; Gao, K.; Yang, X.; Jiang, Z.; Wang, L. Intestinal morphology and immune profiles are altered in piglets by early-weaning. Int Immunopharmacol, 2022, 105, 108520, doi:10.1016/j.intimp.2022.108520.
[27] Yang, M.; Yin, Y.; Wang, F.; Bao, X.; Long, L.; Tan, B.; Yin, Y.; Chen, J. Effects of dietary rosemary extract supplementation on growth performance, nutrient digestibility, antioxidant capacity, intestinal morphology, and microbiota of weaning pigs. J Anim Sci, 2021, 99, doi:10.1093/jas/skab237.
[28] Li, Q.; Tan, D.; Xiong, S.; Yu, K.; Su, Y.; Zhu, W. Time-restricted feeding promotes glucagon-like peptide-1 secretion and regulates appetite via tryptophan metabolism of gut Lactobacillus in pigs. Gut Microbes, 2025, 17, 2467185, doi:10. 1080/19490976.2025.2467185.
Downloads: | 5946 |
---|---|
Visits: | 212047 |
Sponsors, Associates, and Links
-
Information Systems and Economics
-
Accounting, Auditing and Finance
-
Industrial Engineering and Innovation Management
-
Tourism Management and Technology Economy
-
Journal of Computational and Financial Econometrics
-
Financial Engineering and Risk Management
-
Accounting and Corporate Management
-
Social Security and Administration Management
-
Population, Resources & Environmental Economics
-
Statistics & Quantitative Economics
-
Social Medicine and Health Management
-
Land Resource Management
-
Information, Library and Archival Science
-
Journal of Human Resource Development
-
Manufacturing and Service Operations Management
-
Operational Research and Cybernetics