Education, Science, Technology, Innovation and Life
Open Access
Sign In

Ground state properties of rare earth nuclei of the astrophysical r-process

Download as PDF

DOI: 10.23977/jptc.2023.050101 | Downloads: 8 | Views: 373

Author(s)

Sameena Murtaza 1

Affiliation(s)

1 Department of Physics, Lady Brabourne College, Park Circus, Kolkata, West Bengal, India

Corresponding Author

Sameena Murtaza

ABSTRACT

Self consistently Hartree-Fock-Bogolyubov calculations have been performed with Skyrme functional SLY6 parameter set to study the ground-state properties of stable and unstable isotopes of Ytterbium (Yb), Lutetium (Lu), Hafnium (Hf), Tantalum (Ta) and Tungsten (W) nuclei. Binding energy, Quadrupole deformation and Hexadecapole deformation of nuclei having Z=70-74, neutron number (N =100 - 112) and neutron rich nuclei (N=124 - 127) have been analysed with the help of their potential energy surface (PES). Ground-state binding energy and deformation have been compared with the experimental data and data available from other works in literature.

KEYWORDS

Hartree-Fock-Bogolyubov, Skyrme interaction, r-Process, Pairing Correlation

CITE THIS PAPER

Sameena Murtaza, Ground state properties of rare earth nuclei of the astrophysical r-process. Journal of Physics Through Computation (2023) Vol. 5: 1-8. DOI: http://dx.doi.org/10.23977/jptc.2023.050101.

REFERENCES

[1] E. Margaret Burbidge, G. R. Burbidge, William A. Fowler and F. Hoyle, Synthesis of the Elements in Stars, Rev. Mod. Phys. 29 (1957) 547, doi: https://doi. org/10. 1103/RevModPhys. 29. 547. 
[2] A. G. W. Cameron, Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis Chalk River Report (1957).  CRL- 41. doi: NA 
[3] F. Ka ̈ppeler, R. Gallino, S. Bisterzo and Wako Aoki, The s process: Nuclear Physics, stellar models, and observations, Rev Mod. Phys. 83 (2011) 157. doi: https://doi. org/10. 1103/RevModPhys. 83. 157. 
[4] Amanda I, Karakas, John C. Lattanzio, The Dawes Review 2: Nucleosynthesis and stellar yields of low and Intermediate-mass single stars, Publ. Austr. 31 (2014) E030.  doi: https://doi. org/10. 1017/pasa. 2014. 21. 
[5] Rene Reifarth and Yuri A. Litvinov, Measurements of neutron-induced reactions in inverse kinematics, Physical Review Accelerators and Beams 17 (2014) 014701.  doi: https://doi. org/10. 1103/PhysRevSTAB. 17. 014701. 
[6] John J. Cowan, Friedrich Karl Thielemann, and James W. Trunan, The R-process and nucleochronology, Phys. Rep. 208 (1991) 267.  doi: https://doi. org/10. 1016/0370-1573(91)90070-3. 
[7] Y-Z. Qian, The R process: Recent progress and needs for nuclear data, Prog. Part. Nucl. Phys. 50 (2003) 153. doi: https://doi. org/10. 1016/j. nuclphysa. 2004. 09. 041. 
[8] M. Arnould, S. Goriely, and K. Takahashi, The r-process of stellar nucleosynthesis: Astrophysics and Nuclear physics achievements and mysteries, Phys. Rep. 450 (2007) 97.  doi: https://doi. org/10. 1016/j. physrep. 2007. 06. 002
[9] X. D. Xu, B. Sun, Z. M. Niu, Z. Li, Y. Z Qian and J. Meng, Reexamining the temperature and neutron density conditions for r-process nucleosynthesis with augmented nuclear mass models, Phys. Rev. C 87 (2013) 015805. doi:https://doi. org/10. 1103/PhysRevC. 87. 015805. 
[10] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Theory of Superconductivity, Phys. Rev. 108 (1957) 1175. doi: https://doi. org/10. 1103/PhysRev. 108. 1175. 
[11] J. Dobaczewski, H. Flocard and J. Treiner, Hartree-Fock-Bogolyubov description of nuclei near the neutron- drip line, Nucl. Phys A. 422 (1984) 103-139.  https://doi. org/10. 1016/0375-9474(84)90433-0. 
[12] J. Dobaczewski, W. Nazareiwicz, T. R. Werner, J. F. Berger, C. R. Chinn and J. Decharge, Mean-field description of ground-state properties of drip-line nuclei, Phys. Rev. C 53 (1996) 2809. doi: https://doi. org/10. 1103/PhysRevC. 53. 2809. 
[13] K. Bennaceur, J. Dobaczewski and M. Ploszajczak, Continuum effects for the mean-field and pairing properties of weakly bound nuclei, Phys. Rev. C 60 (1999) 034308.  doi: https://doi. org/10. 1103/PhysRevC. 60. 034308. 
[14] M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz , S. Pittel and D. J. Dean, Systematic study of deformed nuclei at the drip lines and beyond, Phys. Rev C 68 (2003) 054312.  doi: https://doi. org/10. 1103/PhysRevC. 68. 054312. 
[15] E. Chabanat, P. Bouche, P. Haensel, J. Meyer and R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities, Nucl. Phys. A 635 (1998) 231.  doi: 10. 1016/S0375- 9474(98)00180-8. 
[16] Michael Bender, Paul-Henri Heenen and Paul-Gerhard Reinhard, Self-consistent mean-field models for nuclear structure, Rev. Mod. Phys. 75 (2003) 121. doi: https://doi. org/10. 1103/RevModPhys. 75. 121. 
[17] J. R. Stone and P-G Reinhard. , The Skyrme interaction infinite nuclei and nuclear matter, Prog. Part. Nucl. Phys. 58 (2007) 587.  doi: https://doi. org/10. 1016/j. ppnp. 2006. 07. 001. 
[18] J. Dobaczewski, B. G. Carlson, J. Dudek, J. Engel, P. Olbratowski, P. Powalowski, M. Sadziak, J. Sarich, W. Satula, N. Schunck, A. Staszczak, M. V. Stoitsov, M. Zalewski and H. Zdunczuk, Solution of the Skyrme -Hartree -Fock –Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis:(VI) HFODD (v2. 40h), Computer Physics Communication 180 (2009) 2361-2391. doi:10. 1016/j. cpc. 2009. 08. 009. 
[19] M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz and P. Ring, Axially deformed solution of the Skyrme Hartree Fock Bogolyubov equations using the transformed harmonic oscillator basis. The program HFBTHO (v1. 66p), Computer Physics Communication 167 (2005) 43.  doi: 10. 1016/j. cpc. 2005. 01. 001. 
[20] E. Chabanat, P. Bouche, P. Haensel, J. Meyer and R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities (Erratum), Nucl. Phys. A 643 (1998) 441(E). doi:10. 1016/S0375-9474(98)00570-3 (erratum). 
[21] P. Mo ̈ller, A. J. Sierk, T. Ichikawa and H. Sagawa, Nuclear ground state masses and deformations: FRDM(2012) (2015), Atomic Data and Nuclear Data Table ArXive:1508. 06294vI. doi: https://doi. org/10. 1016/j. adt. 2015. 10. 002. 
[22] B. Pritychenko, M. Birch, B. Singh, M. Horoi, Tables of E2 transition probabilities from the first 2+ states in even-even nuclei, Atomic Data and Nuclear Data Table 107 (2016) 1. doi: https://doi. org/10. 1016/j. adt. 2015. 10. 001. 
[23] https://www. nndc. bnl. gov. NuDat3. 
[24] J. Meng, W. Zhang, S. G. Zhou, H. Toki and L. S. Geng, Shape evolution for Sm isotopes in relativistic mean- field theory, Eur. Phys. J 25 (2005) 23.  doi: https://doi. org/10. 1140/epja/i2005-10066-6. 
[25] Naoki Tajima, Satoshi Takahara and Naoki Onishi, Extensive Hartree-Fock + BCS calculation with Skyrme SIII force, Nucl. Phys. A 603 (1996) 23. doi: https://doi. org/10. 1016/0375-9474
[26] P. Sarriguren, O. Moreno, R. Alvarez-Rodriguez and E. M de Guerra, Nuclear shape dependence of Gamow- Teller distributions in neutron-deficient Pb isotopes, Phys. Rev. C 72 (2005) 054317.  doi: https://doi. org/ 0. 1103/ hysRevC. 72. 054317. 
[27] R. Rodri ́guez-Guzma ́n and P. Sarriguren, E(5) and X(5) shape phase transitions within a Skyrme-Hartree- Fock+ BCS approach, Phys. Rev. C 76 (2007) 06430. doi:https://doi. org/10. 1103/PhysRevC. 76. 064303.

Downloads: 824
Visits: 60776

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.