Education, Science, Technology, Innovation and Life
Open Access
Sign In

Research on electrode catalysts for solid oxide fuel cells

Download as PDF

DOI: 10.23977/analc.2023.020113 | Downloads: 10 | Views: 280

Author(s)

Zichun Lin 1

Affiliation(s)

1 Materials Department, Wuhan University of Science and Technology, Wuhan, 430081, China

Corresponding Author

Zichun Lin

ABSTRACT

The consumption of energy brings great environmental and economic pressure, and fuel cells, especially solid oxide fuel cells, have gain significant attention in the research, due to their eco-friendliness and remarkable efficiency. The electrode catalyst is crucial for enhancing the electrochemical reaction rate and advancing the progress of the fuel cell. Pure platinum catalysts are frequently employed in solid oxide fuel cells. However, platinum is expensive and non-renewable, and the resolution of this issue is crucial for the advancement of solid oxide fuel cells. This paper reviews current work on several cutting-edge platinum-based catalysts alternative materials. The performance of the cathode and anode catalysts is being analyzed and compared. Based on this analysis, some issues regarding the current catalysts are being raised. This is conducive for the following researchers to develop new electrode catalysts for solid oxide fuel cells.

KEYWORDS

SOFC, Cathode, Anode, Catalyst

CITE THIS PAPER

Zichun Lin, Research on electrode catalysts for solid oxide fuel cells. Analytical Chemistry: A Journal (2023) Vol. 2: 99-107. DOI: http://dx.doi.org/10.23977/analc.2023.020113.

REFERENCES

[1] J. Lee, D. Go, H.J. Kim, B.C. Yang, T. Kim, J.W. Shin, G. Park, J. An, Co-sputtered Pt/Ti alloy cathode for low-temperature solid oxide fuel cell, Journal of Alloys and Compounds, 900 (2022).
[2] W. Jeong, W. Yu, M.S. Lee, S.J. Bai, G.Y. Cho, S.W. Cha, Ultrathin sputtered platinum–gadolinium doped ceria cathodic interlayer for enhanced performance of low temperature solid oxide fuel cells, International Journal of Hydrogen Energy, 45 (2020) 32442-32448.
[3] J.W. Shin, S. Oh, S. Lee, J.-G. Yu, J. Park, D. Go, B.C. Yang, H.J. Kim, J. An, Ultrathin Atomic Layer-Deposited CeO2 Overlayer for High-Performance Fuel Cell Electrodes, ACS Applied Materials & Interfaces, 11 (2019) 46651-46657.
[4] J.W. Shin, S. Lee, D. Go, B.C. Yang, T. Kim, S.E. Jo, P.-C. Su, J. An, Nanometer Yttria-doped Ceria Shell by Atomic Layer Deposition over Porous Pt for Improved Oxygen Reduction Reactions, International Journal of Precision Engineering and Manufacturing-Green Technology, 10 (2023) 773-781.
[5] H.G. Seo, S. Ji, J. Seo, S. Kim, B. Koo, Y. Choi, H. Kim, J.H. Kim, T.-S. Kim, W. Jung, Sintering-resistant platinum electrode achieved through atomic layer deposition for thin-film solid oxide fuel cells, Journal of Alloys and Compounds, 835 (2020).
[6] S. Wu, X. Xu, X. Li, L. Bi, High-performance proton-conducting solid oxide fuel cells using the first-generation Sr-doped LaMnO3 cathode tailored with Zn ions, Science China Materials, 65 (2021) 675-682.
[7] G. Abbas, M. Ashfaq Ahmad, R. Raza, M. Hammad Aziz, M. Ajmal Khan, F. Hussain, T.A. Sherazi, Fabrication of high performance low temperature solid oxide fuel cell based on La0.10Sr0.90Co0.20Zn0.80O5-δ cathode, Materials Letters, 238 (2019) 179-182.
[8] S. Jeon, J. Seo, J.W. Shin, S. Lee, H.G. Seo, S. Lee, N. Tsvetkov, J. Kim, J. An, W. Jung, Metal-oxide nanocomposite catalyst simultaneously boosts the oxygen reduction reactivity and chemical stability of solid oxide fuel cell cathode, Chemical Engineering Journal, 455 (2023).
[9] R.N. Basu, J. Mukhopadhyay, S. Ghosh, A. Das Sharma, Solid-State Electrolytes and Electrode Materials for Fuel Cell Application, Transactions of the Indian Institute of Metals, 72 (2019) 2073-2090.
[10] C. Cai, M. Xie, K. Xue, Y. Shi, S. Li, Y. Liu, S. An, H. Yang, Enhanced electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells, Nano Research, 15 (2021) 3264-3272.
[11] W. Kim, H. Song, J. Moon, H. Lee, Intermediate temperature solid oxide fuel cell using (La,Sr)(Co,Fe)O3-based cathodes, Solid State Ionics, 177 (2006) 3211-3216.
[12] A. Pandiyan, V. Di Palma, V. Kyriakou, W.M.M. Kessels, M. Creatore, M.C.M. van de Sanden, M.N. Tsampas, Enhancing the Electrocatalytic Activity of Redox Stable Perovskite Fuel Electrodes in Solid Oxide Cells by Atomic Layer-Deposited Pt Nanoparticles, ACS Sustainable Chemistry & Engineering, 8 (2020) 12646-12654.
[13] P. Qiu, B. Liu, L. Wu, H. Qi, B. Tu, J. Li, L. Jia, K-doped BaCo0.4Fe0.4Zr0.2O3−δ as a promising cathode material for protonic ceramic fuel cells, Journal of Advanced Ceramics, 11 (2022) 1988-2000.
[14] S.D. Priya, A.S. Nesaraj, A.I. Selvakumar, Facile wet-chemical synthesis and evaluation of physico-chemical characteristics of novel nanocrystalline NdCoO3-based perovskite oxide as cathode for LT-SOFC applications, Bulletin of Materials Science, 44 (2021).
[15] S. Ahmed, W.W. Kazmi, A. Hussain, M.Z. Khan, S. Bibi, M. Saleem, R.H. Song, Z. Sajid, A. Ullah, M.K. Khan, Facile and low-temperature synthesis approach to fabricate Sm0.5Sr0.5CoO3-delta cathode material for solid oxide fuel cell, Journal of the Korean Ceramic Society, 60 (2023) 272-282.
[16] B.C. Yang, S.E. Jo, T. Kim, G. Park, D. Go, T.M. Gür, J. An, Pt-SDC alloy anode for methanol fueled low temperature solid oxide fuel cell, Journal of Alloys and Compounds, 921 (2022).
[17] J.W. Shin, S. Oh, S. Lee, D. Go, J. Park, H.J. Kim, B.C. Yang, G.Y. Cho, J. An, ALD CeO2-Coated Pt anode for thin-film solid oxide fuel cells, International Journal of Hydrogen Energy, 46 (2021) 20087-20092.
[18] W. Yu, S. Lee, S. Ryu, C. Zheng, G.Y. Cho, S.W. Cha, Enhanced performance of nanostructured thin film anode through Pt plasma enhanced atomic layer deposition for low temperature solid oxide fuel cells, International Journal of Hydrogen Energy, 45 (2020) 32816-32824.
[19] W. Li, Y. Zhu, W. Guo, H. Xu, C. Gong, G. Xue, Enhanced oxygen and hydrogen evolution activities of Pt/LaCoO3 perovskite oxide via in-situ exsolution of Pt nanoparticles, Journal of Chemical Sciences, 134 (2022).
[20] Y.-C. Lin, W.-C.J. Wei, Porous Cu–Ni-YSZ cermets using CH4 fuel for SOFC, International Journal of Hydrogen Energy, 45 (2020) 24253-24262.
[21] V. De Marco, A. Iannaci, S. Rashid, V.M. Sglavo, Effect of anode thickness and Cu content on consolidation and performance of planar copper-based anode-supported SOFC, International Journal of Hydrogen Energy, 42 (2017) 12543-12550.
[22] P. Zhang, Y. Yang, Z. Yang, S. Peng, Direct power generation from methanol by solid oxide fuel cells with a Cu-ceria based catalyst layer, Renewable Energy, 194 (2022) 439-447.
[23] Z. Liu, Y. Zhang, J. Yang, W. Guan, J. Wang, S.C. Singhal, L. Wang, Nanoengineering modification of Ni-YSZ anode using in-situ solvothermal process in solid oxide fuel cells with internally reformed fuel, Electrochimica Acta, 444 (2023).
[24] Y. Yao, C. Shi, Z. Huang, P. Cai, S. Wang, Application of NixCo1-x catalyst on solid oxide fuel cell anode for biogas dry reforming, Journal of Power Sources, 521 (2022).
[25] Y. Liu, L. Jia, J. Li, B. Chi, J. Pu, J. Li, High-performance Ni in-situ exsolved Ba(Ce0.9Y0.1)0.8Ni0.2O3-δ/Gd0.1Ce0.9O1.95 composite anode for SOFC with long-term stability in methane fuel, Composites Part B: Engineering, 193 (2020).
[26] H. Yan, N. Zhang, D. Wang, Highly efficient CeO2-supported noble-metal catalysts: From single atoms to nanoclusters, Chem Catalysis, 2 (2022) 1594-1623.
[27] B. Bochentyn, P. Błaszczak, M. Gazda, A. Fuerte, S.F. Wang, P. Jasiński, Investigation of praseodymium and samarium co-doped ceria as an anode catalyst for DIR-SOFC fueled by biogas, International Journal of Hydrogen Energy, 45 (2020) 29131-29142.
[28] B. Bochentyn, M. Chlipała, M. Gazda, S.F. Wang, P. Jasiński, Copper and cobalt co-doped ceria as an anode catalyst for DIR-SOFCs fueled by biogas, Solid State Ionics, 330 (2019) 47-53.
[29] M. Choolaei, E. Jakubczyk, B. Amini Horri, Synthesis and characterisation of a ceria-based cobalt-zinc anode nanocomposite for low-temperature solid oxide fuel cells (LT-SOFCs), Electrochimica Acta, 445 (2023).

Downloads: 531
Visits: 19755

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.