Education, Science, Technology, Innovation and Life
Open Access
Sign In

Role of pairing on transitional nuclei of the astrophysical interest

Download as PDF

DOI: 10.23977/jptc.2024.060101 | Downloads: 10 | Views: 486

Author(s)

Sameena Murtaza 1

Affiliation(s)

1 Department of Physics, Lady Brabourne College, Park Circus, Kolkata, West Bengal, India

Corresponding Author

Sameena Murtaza

ABSTRACT

Hartreefock-Fock-Bogoliubov calculation have been done selfconsistently to study the shape transition and ground state properties namely binding energy, quadrupole deformation, hexadecapole deformation and charge radius of Platinum (Pt) isotopes from N=82 to N=126. We also study the effects of pairing force on the isotopes of transitional nucleus, Tungston. We use here Skyrme functional SLY6. We compare our results with experimental data wherever available and other studies in literature.

KEYWORDS

Hartree-Fock-Bogoliubov, Skyrme Functional SLY6, Astrophysical r-process, Pairing Correlation, Deformation

CITE THIS PAPER

Sameena Murtaza, Role of pairing on transitional nuclei of the astrophysical interest. Journal of Physics Through Computation (2024) Vol. 6: 1-9. DOI: http://dx.doi.org/10.23977/jptc.2024.060101.

REFERENCES

[1] P. J. Nolan and P. J. Twin (1988), Superdeformed Shapes at high Angular Momentum, Annu. Rev. Nucl. Part. Sci. 38, 533. https://doi.org/10.1146/annurev.ns.38.120188 
[2] S. Aberg et al. (1990), Nuclear Shapes in mean field theory, Annu. Rev. Nucl. Part. Sci. 40, 439. https://doi. org/10.1146/annurev.ns.40.120190.
[3] C. Baktash et al. (1995), Identical Bands in deformed and Superdeformed Nuclei, Annu. Rev. Nucl. Part. Sci. 45, 485.doi 10.1146/annurev.ns.45.120195.002413 
[4] P. Quentin and H. Flocard, (1978), Self-Consistent Calculations of Nuclear Properties with Phenomenological Effective Forces, Annu. Rev. Nucl. Part. Sci. 28, 523. https://doi.org/10.1146/annurev.ns.28.120178.002515.
[5] M. Baranger and K. Kumar (1968), Nuclear deformations in the Pairing-plus quadrupole Model: (II). Discussion of validity of the model, Nucl. Phys. A 110, 490. https://doi.org/10.1016/0375-9474 (68)90370-9 
[6] G. D. Alkhazov et al. (1989), Nuclear deformation of Holmium Isotopes, Nucl. Phys. A 504, 549. https://doi.org/ 10.1016/0375-9474(89)90557-5.
[7] S. K. Patra and P. K. Panda (1993), Systematic study of neutron deficient Ho isotopes in a relativistic mean field theory, Phys. Rev. C 47, 1514. https://doi.org/10.1103/PhysRevC.47.1514
[8] M. M. Sharma and P. Ring (1992), Relativistic mean field description of neutron deficient platinum isotopes, Phys.  Rev. C 46, 1715. https://doi.org/10.1103/PhysRevC.46.1715.
[9] S. Mahapatro et al. (2016), Nuclear structure and decay properties of even-even nuclei in Z = 70 - 80 drip line region, Int. Jour. Mod. Phys. E 25, 1650062. https://doi.org/10.1142/S0218301316500622.
[10] P. Sarriguren et al. (2008), Shape transitions in neutron-rich Yb, Hf, W, Os and Pt isotopes within a Skyrme-Hartree-Fock + BCS approach, Phy. Rev. C 77, 064322. https://doi.org/10.1103/PhysRevC.77.064322.
[11] S. Patra et al. (1999), Oscillation in deformation properties of heavy rare earth nuclei, J. Phys. G. 25, 501. https://doi.org/10.1088/0954-3899/25/3/003. 
[12] Y. E. Bassem and M. Oulne (2019), Ground state properties and shape evolution in Pt isotopes within the covariant density functional theory, Int. Jour. Mod. Phys. E 28, 1950078. https://doi.org/10.1142/S0218301319500782
[13] J.Bardeen et al. (1957), Theory of Superconductivity, Phys. Rev. 108, 1175. doi:https://doi.org/ 10. 1103/PhysRev.108.1175. 
[14] J. Dobaczewski et al. (2009), Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis: (VI) HFODD (v2.40h), Comp. Phys. Comm. 180, 2361. doi:10.1016/j.cpc.2009.08.009.
[15] N. Schunck et al. (2012), Solution of the Skyrme-Hartree Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis:(VII) HFODD (v2.49t) Comp. Phys. Comm. 183, 166. 
[16] J. Dobaczewski and P. Olbratowski (2005), Solution of the Skyrme-Hartree-Fock Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (V) HFODD(v2.08k), Comp. Phys. Comm. 167, 214. https://doi.org/ 10.1016/j.cpc.2005.01.014.
[17] J. Dobaczewski and P. Olbratowski (2004), Solution of the Skyrme-Hartree-Fock Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (IV) HFODD (v2.08i), Comp. Phys. Comm. 158, 158. https://doi.org/10.1016/j.cpc.2004.02.003.
[18] J. Dobaczewski and J. Dudek (2000), Solution of the Skyrme-Hartree-Fock equations in the Cartesian deformed harmonic-oscillator basis. (III) HFODD (v1.75r), Comp. Phys. Comm. 131, 164. https://doi.org/10.1016/S0010-4655 (00)00121-1.
[19] J. Dobaczewski and J. Dudek (1997), Solution of the Skyrme-Hartree-Fock equations in the Cartesian deformed harmonic oscillator basis I. The method, Comp. Phys. Comm. 102, 166. https://doi.org/10.1016/S0010-4655
[20] J. Dobaczewski and J. Dudek (1997), Solution of the Skyrme-Hartree-Fock equations in the Cartesian deformed harmonic oscillator basis II. The program HFODD, Comp. Phys. Comm. 102, 183. https://doi.org/10.1016/S0010-4655 (97)00005-2. 
[21] E. Chabanat et al. (1998), A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far   from stabilities, Nucl. Phys. A 635, 231. doi: 10.1016/S0375-9474(98)00180-8.
[22] P. Moeller et al. (1997), Nuclear Properties for Astrophysical and Radioactive ion beam Application, Atom. Nucl.  Data Table 66, 131. doi:10.1006/adnd.1997.0746.
[23] P. Moeller et al. (1995), Nuclear Ground State Masses and Deformations, Atom. Nucl. Data Table 59, 185. https://doi.org/10.1006/adnd.1995.1002.
[24] https://www.nndc.bnl.gov, NuDat3.0 (2023). 
[25] R. Rodriguez-Guzman et al. (2010), Mean field study of structural changes in Pt isotopes with the Gogny interaction, Phys. Rev. C 81, 024310. https://doi.org/10.1103/PhysRevC.81.024310.
[26] J.-E. Garcia-Ramos et al. (2014), Shape evolution and shape coexistence in Pt isotopes: Comparing interacting boson model configuration mixing and Gogny mean field energy surfaces, Phys. Rev. C 89, 034313. https://doi.org/10.1103/PhysRevC.89.034313.
[27] K. Nomura et al. (2011), Structural evolution in Pt isotopes with the interacting boson model Hamiltonian derived from the Gogny energy density functional, Phys. Rev. C 83, 014309. https://doi.org/10.1103/PhysRevC.83.014309.
[28] J. Yao et al. (2013), Systematics of low-lying states of even-even nuclei in the neutron deficient lead region  from a  beyond-mean field calculation, Phys. Rev. C 87, 034322. 10.1103/Physrevc.87.034322.
[29] J. M. Boillos and P. Sarriguren (2015), Effects of deformation on the decay patterns of light even-even and odd-mass Hg and Pt isotopes, Phys. Rev. C 91, 034311. https://doi.org/10.1103/PhysRevC.91.034311.
[30] K. Nomura et al. (2013), Shape evolution and the role of intruder configurations in Hg isotopes within the interacting boson model based on a Gogny energy density functional, Phys. Rev. C 87, 064313. https://doi.org/10. 1103/PhysRevC.87.064313.
[31] I. Angeli and K. Marinova (2013), Table of experimental nuclear ground state charge radii: An Update, Atom. Data Nucl. Data Tables 99, 69. doi.10.1016/j.adt.2011.12.006. 

Downloads: 931
Visits: 66940

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.