Education, Science, Technology, Innovation and Life
Open Access
Sign In

Colorimetric Detection of Alkaline Phosphatase (ALP) Based on Fe3O4@MIL@Pt

Download as PDF

DOI: 10.23977/analc.2024.030111 | Downloads: 23 | Views: 763

Author(s)

Bing Li 1

Affiliation(s)

1 School of Chemistry, South China Normal University, Guangzhou, Guangdong, China

Corresponding Author

Bing Li

ABSTRACT

This study presents an advanced colorimetric biosensor based on Fe3O4@MIL@Pt nanocomposites for the sensitive and selective quantification of alkaline phosphatase (ALP). The nanocomposite system combines the catalytic capabilities of Fe3O4 nanoparticles, the structural advantages of metal-organic frameworks (MIL), and the catalytic prowess of platinum (Pt) nanoparticles. Through the implementation of a triple signal amplification strategy, the catalytic efficiency of TMB oxidation is significantly boosted, resulting in a distinct blue color development of the oxidized TMB (OX-TMB). The assay is designed such that AA reduces OX-TMB, leading to a measurable decrease in absorbance, while ALP activity is reflected in the hydrolysis of ascorbic acid-2-phosphate (AA2P) to AA, thereby modulating the colorimetric signal. This system allows for highly sensitive detection of ALP by monitoring absorbance changes. The analytical performance is characterized by a detection limit of 0.091 mU/mL with a linear range from 0.5 to 10 mU/mL. Importantly, the method demonstrates excellent analytical performance with real serum samples, emphasizing its potential for clinical diagnostic applications.

KEYWORDS

Fe3O4@MIL@Pt; colorimetric method; 3,3',5,5'-Tetramethylbenzidine (TMB); ascorbic acid (AA); alkaline phosphatase (ALP)

CITE THIS PAPER

Bing Li, Colorimetric Detection of Alkaline Phosphatase (ALP) Based on Fe3O4@MIL@Pt. Analytical Chemistry: A Journal (2024) Vol. 3: 62-71. DOI: http://dx.doi.org/10.23977/analc.2024.030111.

REFERENCES

[1] MILLÁN J L. Purinerg. Signal. , 2006, 2(2): 335.
[2] F.Y. Zheng, S.H. Guo, F. Zeng, J. Li, S.Z. Wu, Ratiometric fluorescent probe for alkaline phosphatase based on betaine-modified polyethylenimine via excimer/monomer conversion, Anal. Chem. 86 (2014) 9873–9879.
[3] G.L. Li, H.L. Fu, X.J. Chen, P.W. Gong, G. Chen, L. Xia, H. Wang, J.M. You, Y.N. Wu,Facile and sensitive fluorescence sensing of alkaline phosphatase activity with photoluminescent carbon dots based on inner filter effect, Anal. Chem. 88 (2016), 2720–2726.
[4] D.W. Yang, Z.Z. Guo, Y.G. Tang, P. Miao, Poly(thymine)-templated selective formation of copper nanoparticles for alkaline phosphatase analysis aided by alkyneazide cycloaddition “click” reaction, ACS Appl. Nano Mater. 1 (2018) 168–174.
[5] X. Niu, K. Ye, L. Wang, Y. Lin, D. Du, A review on emerging principles and strategies for colorimetric and fluorescent detection of alkaline phosphatase activity, Anal. Chim. Acta 1086 (2019) 29–45.
[6] S.M. Shaban, S. Byeok Jo, E. Hafez, J. Ho Cho, D.-H. Kim, A comprehensive overview on alkaline phosphatase targeting and reporting assays, Coord. Chem. Rev. 465 (2022) 214567.
[7] T. Balbaied, A. Hogan, E. Moore, Electrochemical detection and capillary electrophoresis: comparative studies for alkaline phosphatase (ALP) release from living cells, Biosensors (Basel) 10 (8) (2020), https://doi.org/10.3390/
bios10080095.
[8] Y. Liu, E. Xiong, X. Li, J. Li, X. Zhang, J. Chen, Sensitive electrochemical assay of alkaline phosphatase activity based on TdT-mediated hemin/G-quadruplex DNAzyme nanowires for signal amplification, Biosens. Bioelectron. 87 (2017) 970–975, https://doi.org/10.1016/j.bios.2016.09.069.
[9] S. Li, J. Li, B. Geng, X. Yang, Z. Song, Z. Li, B. Ding, J. Zhang, W. Lin, M. Yan, TPE based electrochemiluminescence for ALP selective rapid one-step detection applied in vitro, Microchem. J. 164 (2021), https://doi.org/10.1016/j. microc.2021.106041.
[10] H. Jiang, X. Wang, Alkaline phosphatase-responsive anodic electrochemiluminescence of CdSe nanoparticles, Anal. Chem. 84 (16) (2012) 6986–6993, https://doi.org/10.1021/ac300983t.
[11] J. Dong, Y. Li, M. Zhang, Z. Li, T. Yan, W. Qian, Ultrasensitive surface-enhanced Raman scattering detection of alkaline phosphatase, Anal. Methods 6 (22) (2014) 9168–9172, https://doi.org/10.1039/c4ay01885k.
[12] Y. Zeng, J.-Q. Ren, S.-K. Wang, J.-M. Mai, B. Qu, Y. Zhang, A.-G. Shen, J.-M. Hu,Rapid and reliable detection of alkaline phosphatase by a hot spots amplification strategy based on well-controlled assembly on single nanoparticle, ACS Appl. Mater. Interfaces. 9 (35) (2017) 29547–29553, https://doi.org/10.1021/acsami.7b09336.
[13] Q. Yang, X. Wang, H. Peng, M. Arabi, J. Li, H. Xiong, J. Choo, L. Chen, Ratiometric fluorescence and colorimetry dual-mode assay based on manganese dioxide nanosheets for visual detection of alkaline phosphatase activity, Sens. Actuators B Chem. 302 (2020), https://doi.org/10.1016/j.snb.2019.127176.
[14] I. Apostol, R. Kuciel, E. Wasylewska, W.S. Ostrowski, Phosphotyrosine as a substrate of acid and alkaline phosphatases, Acta Biochim. Pol. 32 (3) (1985) 187–197. 
[15] P.J. Stankiewicz, M.J. Gresser, Inhibition of phosphatase and sulfatase by transition-state analogues, Biochemistry 27 (1) (1988) 206–212.
[16] J. Wang, Q. Lu, C. Weng, X. Li, X. Yan, W. Yang, B. Li, X. Zhou, Label-free colorimetric detection of acid phosphatase and screening of its inhibitors based on biomimetic oxidase activity of MnO2 nanosheets, ACS Biomater. Sci. Eng. 6 (5) (2020) 3132–3138, https://doi.org/10.1021/acsbiomaterials.0c00217.
[17] L. Dong, Q. Miao, Z. Hai, Y. Yuan, G. Liang, Enzymatic hydrogelation-induced fluorescence turn-off for sensing alkaline phosphatase in vitro and in living cells, Anal. Chem. 87 (13) (2015) 6475–6478, https://doi.org/10.1021/acs. analchem.5b01657.
[18] F. Zheng, S. Guo, F. Zeng, J. Li, S. Wu, Ratiometric fluorescent probe for alkaline phosphatase based on betaine-modified polyethylenimine via excimer/monomer conversion, Anal. Chem. 86 (19) (2014) 9873–9879, https://doi.org/10.1021/ac502500e.
[19] Y.H. Lin, J.S. Ren, X.G. Qu, Nano-gold as artificial enzymes: hidden talents, Adv.Mater. 26 (2014) 4200–4217.
[20] Y.H. Lin, J.S. Ren, X.G. Qu, Catalytically active nanomaterials: a promising candidate for artificial enzymes, Acc. Chem. Res. 47 (2014) 1097–1105.
[21] H. Wei, E.K. Wang, Nanomaterials with enzyme-like characteristics (nanozymes):next-generation artificial enzymes, Chem. Soc. Rev. 42 (2013) 6060–6093.
[22] J.J.X. Wu, X.Y. Wang, Q. Wang, Z.P. Lou, S.R. Li, Y.Y. Zhu, L. Qin, H. Wei, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II), Chem. Soc. Rev. 48 (2019) 1004–1076.
[23] A. Asati, S. Santra, C. Kaittanis, S. Nath, J.M. Perez, Oxidase-like activity of polymer-coated cerium oxide nanoparticles, Angew. Chem., Int. Ed. 48 (2009) 2308–2312.
[24] H.H. Deng, X.L. Lin, Y.H. Liu, K.L. Li, Q.Q. Zhuang, H.P. Peng, A.L. Liu, X.H. Xia, W. Chen, Chitosan-stabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase, Nanoscale 9 (2017) 10292–10300.
[25] B. Liu, Z. Huang, J. Liu, Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F− detection, Nanoscale 8 (2016) 13562–13567.
[26]Chen, H.; Qiu, Q.; Sharif, S.; Ying, S.; Wang, Y.; Ying, Y.Solution-Phase Synthesis of Platinum Nanoparticle-Decorated MetalOrganic Framework Hybrid Nanomaterials as Biomimetic Nanoenzymes for Biosensing Applications. ACS Appl. Mater. Interfaces 2018, 10, 24108−24115.
[27] D. Wei, D. Xiong, N. Zhu, Y. Wang, X. Hu, B. Zhao, J. Zhou, D. Yin, Z. Zhang, Copper peroxide nanodots encapsulated in a metal–organic framework for selfsupplying hydrogen peroxide and signal amplification of the dual-mode immunoassay, Anal. Chem. 94 (38) (2022) 12981–12989.
[28] Q. Wang, X. Wang, H. Wei, Spinel-oxide-based laccase mimics for the identification and differentiation of phenolic pollutants, Anal. Chem. 94 (28) (2022) 10198–10205.
[29] Z. Xu, Z. Qiu, Q. Liu, Y. Huang, D. Li, X. Shen, K. Fan, J. Xi, Y. Gu, Y. Tang, J. Jiang,J. Xu, J. He, X. Gao, Y. Liu, H. Koo, X. Yan, L. Gao, Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections, Nat. Commun. 9 (1) (2018) 3713.
[30] Y. Shen, X. Gao, H. Chen, Y. Wei, H. Yang, Y. Gu, Ultrathin C3N4 nanosheets-based oxidase-like 2D fluorescence nanozyme for dual-mode detection of organophosphorus pesticides, J. Hazard Mater. 451 (2023) 131171.
[31] T. Lin, Y. Qin, Y. Huang, R. Yang, L. Hou, F. Ye, S. Zhao, A label-free fluorescence assay for hydrogen peroxide and glucose based on the bifunctional MIL-53(Fe) nanozyme, Chem. Commun. 54 (14) (2018) 1762–1765.
[32] Emir, G.; Dilgin, Y.; Ramanaviciene, A.; Ramanavicius, A.Microchem. J. 2021, 161, 105751.
[33] H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes, Chem. Soc. Rev. 42 (14) (2013) 6060–6093. 
[34] Gao Z, Xu M, Lu M, Chen G and Tang D, Urchin-like (gold core)@(platinum shell) nanohybrids: a highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Biosens Bioelectron 70:194–201 (2015).
[35] Ren R, Cai G, Yu Z, Zeng Y and Tang D, Metal-polydopamine framework: an innovative signal-generation tag for colorimetric immunoassay. Anal Chem 90:11099–11105 (2018).
[36] Gao Z, Lv S, Xu M and Tang D, High-index {hk0} faceted platinum concave nanocubes with enhanced peroxidase-like activity for an ultrasensitive colorimetric immunoassay of the human prostate-specificantigen. Analyst 142:911–917 (2017).

Downloads: 1209
Visits: 62904

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.