Education, Science, Technology, Innovation and Life
Open Access
Sign In

Theoretical study of spectroscopic constants and molecular properties of rare gas hydride ions HeH+, NeH+, ArH+, KrH+, XeH+ and RnH+

Download as PDF

DOI: 10.23977/jptc.2021.41001 | Downloads: 31 | Views: 763


T. K. Ghosh 1, S. Ghosh 1, G. Nandi 1, S. Naskar 1


1 Department of Physics, Diamond Harbour Women’s University, Sarisha, West Bengal-743368, India

Corresponding Author

T. K. Ghosh


Theoretical calculations have been performed to investigate spectroscopic constants and various molecular properties of rare gas hydride ions HeH+, NeH+, ArH+, KrH+, XeH+ and RnH+ in their ground 1Σ+ state using different basis sets at the QCISD(T)//MP2 level of theory. Some of these systems are potentially important in astrophysics. The calculated values are found in good agreement with the available data. Many data are reported to be first time in literature.


Spectroscopic constants, Molecular properties, Rage gas hydride ions


T. K. Ghosh, S. Ghosh, G. Nandi and S. Naskar. Theoretical study of spectroscopic constants and molecular properties of rare gas hydride ions HeH+, NeH+, ArH+, KrH+, XeH+ and RnH+ . Journal of Physics Through Computation (2021) Vol. 4: 1-8. DOI:


[1] Gusten, R., Wiesemeyer, H.D., Neufeld, D., Menten, K.M., Graf, U.U., Jacobs, K., Klein, B.,  Ricken, O., Risacher, C. and Stutzki, J. (2019) Astrophysical detection of the helium hydride ion HeH+. Nature, 568, 357-363. DOI:10.1038/s41586-019-1090-x
[2] Bovino, S., Tacconi, M., Gianturco, F.A. and Gajlli, D. (2011) Ion chemistry in the early universe: Revisiting the role of HeH+ with new quantum calculations. Astron. Astrophys., A 529, 140-144. DOI:10.1051/0004-6361/201116740 
[3] Harris, G.J., Lynas-Gray, A.E., Miller, S. and Tennyson, J. (2004) The role of HeH+ in cool helium-rich white dwarfs. Astrophys. J., 617, L143-146.
[4] Mousis, O., Pauzat, F., Ellinger, Y., Ceccarelli, C. (2008) Sequestration of noble gases by H+3 in protoplanetary disks and outer solar system composition. Astrophys. J., 673, 637-646.
[5] Hogness, T.R. and Lunn, E.C. (1925) The ionization of hydrogen by electron impact as interpreted by positive ray analysis. Phys. Rev., 26, 44-55. DOI:10.1103/PhysRev.26.44
[6] Johns, J.W.C. (1984) Spectra of the protonated rare gases. J. Mol. Spectrosc., 106, 124-133. DOI:10.1016/0022-2852(84)90087-0
[7] Ram, R.S., Bernath, P.F. and Brault, J.W. (1985) Fourier transform emission spectroscopy of NeH+.  J. Mol. Spectrosc,. 113, 451-457. DOI:10.1016/0022-2852(85)90281-4
[8] Linnartz, H., Zink, L.R. and Evenson, K.M. (1977) The pure rotational spectra of 84KrH+ and 86KrH+.  J. Mol. Spectrosc., 184, 56-59.
[9] Hunter, E.P. and Lias, S.G. (1988) Evaluated gas phase basicities and proton affinities of molecules: an update. J. Phys. Chem. Ref. Data, 27, 413-656. DOI:10.1063/1.556018
[10] Molski, M. (2002) Reduction of wave numbers of pure rotational and vibration-rotational transitions of KrH+ X 1Σ+ to parameters of radial functions. Mol. Phys., 100, 3545-3552. DOI:10.1080/00268970210150531
[11] Rogers S.A., Brazier, C.R. Bernath, P.F. (1987) The infrared spectrum of XeH+.  J. Chem. Phys., 87, 159-162. DOI:10.1063/1.453611
[12] Peterson, K.A., Petrmichl, R.H., McClain, R.L. and Wood, R.C. (1991) Submillimeter wave spectroscopy of XeH+ and XeD+.  J. Chem. Phys., 95, 2352-2360. DOI:10.1063/1.460941
[13] Beach, J.Y. (1936) Quantum mechanical treatment of helium hydride molecule ion HeH+. J. Chem. Phys., 4, 353-357. DOI:10.1063/1.1749857
[14] Toh, S. (1940) Evaluated quantum-mechanical treatment of helium hydride molecule ion HeH+. Proc. Phys. Math. Soc. Japan, 22, 119-126. DOI:10.11429/ppmsj1919.22.2_119
[15] Evett, A.A. (1956) Ground state of the helium hydride ion. J. Chem. Phys., 24, 150-152. DOI:10.1063/1.1700818
[16] Schutte, C. J. H. (2002) An ab initio molecular orbital study of the argon hydride molecule– ions, ArH+ and ArD+, at the MP4(SDQ)/6-311++G(3df,3dp) level. III: a study of some physical properties of ArH+, compared with those of HeH+, NeH+ and KrH+ and the diatomic Van der Waals molecules He2, Ne2, Ar2 and Kr2. Chem. Phys. Lett., 353, 389- 395. DOI:10.1016/S0009-2614(02)00050-7
[17] Rosmus, P. and Reinsch, E.-A. (1980) Calculation of molecular vonstants for the ground states of the NeH+ and KrH+ Ions. Z. Naturforsch, 35A, 1066-1070. DOI:10.1515/zna-1980-1011
[18] Rosmus, P. (1979) Molecular constants for the 1Σ+ ground state of the ArH+ ion. Theor. Chim. Acta. 51, 359-362. DOI:10.1007/BF00548944
[19] Klein, R. and Rosmus, P. (1984) Calculation of infrared transition probabilities for the 1Σ+ ground state of XeH+. Z. Naturforsch, 39A, 349-353. DOI:10.1515/zna-1984-0405
[20] Lundell, J. Nieminen, J. and H. Kunttu, H. (1993) All-electron and effective core potential studies on ground state ArH+, KrH+ and XeH+ ions. Chem. Phys. Lett., 208, 247-255. DOI:10.1016/0009-2614(93)89070-X
[21] Alekseyev, A.B., Liebermann, H.P. and Buenker, R. (2008) Spin–orbit configuration interaction study of the ultraviolet photofragmentation of XeH+.  Phys. Chem. Chem. Phys., 10, 5706-5713. DOI:10.1039/b807078d
[22] Ferrante, F., Barone, G. and Duca, D. (2012) Relativistic coupled cluster calculations of the electronic structure of KrH+, XeH+ and RnH+. Theor. Cem. Acc., 131, 1165-1171. DOI:10.1007/s00214-012-1165-3
[23] Basis sets are taken from:
[24] Frisch M. J., et al. (2003) Gaussian 03, Gaussian Inc., Wallingbond, CT.

Downloads: 632
Visits: 45247

All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.