Higher energy modes of Fractional quantum Hall Effect
DOI: 10.23977/jptc.2018.11002 | Downloads: 79 | Views: 5655
Author(s)
Debashis Das 1, Moumita Indra 1, Dwipesh Majumder 1
Affiliation(s)
1 Indian Institute of Engineering Science and Technology, Shibpur, India
Corresponding Author
Debashis DasABSTRACT
We have calculated the energy spectra for almost all the filling fraction in the Jain series, low energy fundamental mode as well as higher energy modes using CF theory. The nature of low energy mode and higher energy mode is nearly identical roton mode. We have observed that, these series of filling fractions ν = n/(2pn+1) posses n number of roton minima in their higher energy mode.
KEYWORDS
Higher energy, Fractional quantum, Jain series, CF theory.CITE THIS PAPER
Debashis, D., Moumita, I., Dwipesh, M., Higher energy modes of Fractional quantum Hall Effect. Journal of Physics Through Computation (2018) 1: 8-16.
REFERENCES
[1] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
[2] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[3] R. R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 70, 2944 (1993).
[4] Igor F. Herbut and Zlatko Tešanović, Phys. Rev. Lett. 71, 4234 (1993).
[5] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science 269, 198(1995); K. B. Davis et al.., Phys. Rev. Lett. 75, 3969(1995); A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Phys. Rev. Lett. 94, 160401(2005); C.A. Sackett, C.C. Bradley, M. Welling, R.G. Hulet, Appl. Phys. B 65, 433(1997), T. Weber, J. Herbig, M. Mark, H. Nägerl, R. Grimm, Science 299, 232(2003).
[6] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989), Phys. Rev. B 41, 7653 (1990).
[7] K. Park and J. K. Jain, Solid State Communications 119 (2001) 291; K. Park and J. K. Jain, Phys. Rev. Lett. 83, 5543 (1999); M. Indra, D. Das, D. Majumder, Phys. Lett. A 382, 2984 (2018).
[8] A. Lopez and E. Fradkin, Phys. Rev. B 44, 5246 (1991).
[9] B. I. Halperin, Helv. Phys. Acta 56, 75 (1983).
[10] M. R. Peterson, J. K. Jain, Phys. Rev. B 68, 195310(2003); G. Gervais, L. W. Engel, H. L. Stormer, D. C. Tsui, K. W. Baldwin, K. W. West, L. N. Pfeiffer, Phys. Rev. Lett. 93,266804 (2004).
[11] S. Y. Lee, V. W. Scarola and J. K. Jain, Phys. Rev. B 66, 085336 (2002);D. Das, M. Indra, D. Majumder, Solid state commu. 260 19 (2017).
[12] W. Pan, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin and K. W. West, Phys. Rev. Lett. 88, 176802 (2002).
[13] C. Kallin and B. I. Halperin, Phys. Rev. B 30, 5655 (1984); J. P. Longo and C. Kallin, Phys. Rev. B 47, 4429 (1993).
[14] P. M. Platzman and S. He, Phys. Rev. B 49, 13674 (1994).
[15] R. P. Feynman, Phys. Rev. 91, 1291 (1953); Phys. Rev. 94, 262 (1954).
[16] S. M. Girvin, A. H. MacDonald and P. M. Platzman, Phys. Rev.Lett. 54, 581 (1985), Phys. Rev. B 33, 2481 (1986); K. Park and J. K. Jain, Solid State Commun. 115, 353 (2000).
[17] G. Murthy, Phys. Rev. B 60, 13702 (1999).
[18] G. Dev and J. K. Jain, Phys. Rev. Lett. 69, 2843 (1992); R. K. Kamilla, X. G. Wu and J. K. Jain, Phys. Rev. Lett. 76, 1332 (1996); V. W. Scarola, K. Park and J. K. Jain, Phys. Rev. B 61, 13064 (2000).
[19] A. Pinczuk, B. S. Dennis, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 70, 3983 (1993); M. Kang, A. Pinczuk, B. S. Dennis, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 86, 2637 (2001); I. Dujovne, A. Pinczuk, M. Kang, B. S. Dennis, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 90, 036803 (2003); I. Dujovne, A. Pinczuk, M. Kang, B. S. Dennis, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 95, 056808 (2005).
[20] U. Wurstbauer, D. Majumder, S. S. Mandal, I. Dujovne, T. D. Rhone, B. S. Dennis, A. F. Rigosi, J. K. Jain, A. Pinczuk, K. W. West and L. N. Pfeiffer, Phys. Rev. Lett. 107, 066804 (2011).
[21] T. D. Rhone, D. Majumder, B. S. Dennis, C. Hirjibehedin, I. Dujovne, J. G. Groshaus, Y. Gallais, J. K. Jain, S. S. Mandal, A. Pinczuk, L. Pfeiffer and K. West, Phys. Rev. Lett. 106, 096803 (2011).
[22] J. K. Jain and R. K. Kamilla, Int. J. Mod. Phys. B 11, 2621 (1997).
[23] D. Majumder, S. S. Mandal and J. K. Jain, Nat. Phys. 5, 403 (2009); D. Majumder and S. S. Mandal Phys. Rev. B 90, 155310 (2014).
[24] S. Golkar, D. X. Nguyen, M. M. Roberts and D. T. Son, Phys. Rev. Lett. 117, 216403(2016).
[25] C. F. Hirjibehedin, et al. Phys. Rev. Lett. 95, 066803 (2005).
[26] D. Das, M. Indra, D. Majumder, Solid state commu. 260 19 (2017).
[27] Composite Fermions, J. K. Jain ( Cambridge University Press), http://www.cambridge.org/9780521862325.
[28] F.D.M.Haldane, Phys. Rev. Lett. 51, 605 (1983).F. D. M. Haldane ,E. H. Rezayi, Phys. Rev. Lett. 54,237 (1985) G. Fano, F. Ortolani, and E. Colombo, Phys. Rev. B 34,2670 (1986).
[29] V. W. Scarola, K. Park and J. K. Jain, Phys. Rev. B 61, 13064 (2000). [30] S. S. Mandal, J. K. Jain, Phys. Rev. B 66 , 155302 (2002).
[31] M. W. Ortalano, Song He and S. Das Sarma Phys. Rev. B 55, 7702 (1997).
Downloads: | 972 |
---|---|
Visits: | 71340 |
Sponsors, Associates, and Links
-
International Journal of Power Engineering and Engineering Thermophysics
-
Numerical Algebra and Scientific Computing
-
Transactions on Particle and Nuclear Physics
-
Journal of Probability and Mathematical Statistics
-
Multibody Systems, Nonlinear Dynamics and Control
-
Complex Analysis and Geometry
-
Dynamical Systems and Differential Equations
-
Acoustics, Optics and Radio Physics
-
Progress in Atomic and Molecular Physics
-
Transactions on Condensed Matter Physics
-
Transactions on Computational and Applied Mathematics
-
Progress in Plasma Physics
-
Combinatorics and Graph Theory
-
Research and Practice of Mathematics & Statistics
-
Nuclear Techniques and Applications
-
Journal of Photonics Research
-
Journal of Compressors and Refrigeration
-
Journal of Theoretical Physics Frontiers
-
Journal of Nonlinear Science and Complexity
-
Vacuum Science Journal
-
Computational Fluid Dynamics