High-Dimensional Multi-Objective Optimization Strategy Based on Decision Space Oriented Search
DOI: 10.23977/csoc.2019.11001 | Downloads: 23 | Views: 4474
Author(s)
Wang Peng 1
Affiliation(s)
1 School of Economics and Management, Dalian University, No.10, Xuefu Avenue, Economic & Technical Development Zone, Dalian, Liaoning,The People's Republic of China(PRC)
Corresponding Author
Wang PengABSTRACT
Traditional multi-objective evolutionary algorithms (MOEAs) have good performance for low-dimensional continuous multi-objective optimization problems, but with the increase of the target dimension of the optimization problem, the optimization difficulty will also increase sharply. The main reasons are: the algorithm itself. Insufficient, the selection pressure becomes smaller when the dimension increases, and the convergence and distribution conflicts are difficult to balance. This paper proposes a directional search strategy in decision space by using the characteristics of continuous multi-objective optimization problem to optimize the high-dimensional multi-objective optimization. The strategy can be combined with the MOEA based on dominance relationship. DS firstly samples and analyzes the problem, and analyzes the problem characteristics to obtain the convergence subspace control vector and the distributed subspace control vector. The algorithm search process is divided into the convergence search phase. And the distributed search phase, which corresponds to the convergence subspace and the distribution subspace respectively, and uses the sampling analysis pair to make a macroscopic influence on the region of the generation of the individual generation in the different stages of the search. Convergence and distribution are considered in stages to avoid convergence. Sexuality and distribution are difficult to balance, and at the same time, search for funds in a certain stage. The relative concentration of the source increases the search ability of the algorithm to some extent. In the experimental part, the NSGA-II and SPEA2 algorithms combined with the DS strategy are compared with the original NSGA-II and SPEA2 algorithms, and DS-NSGA-II is taken as an example. Compared with other high-dimensional algorithms MOEAD-PBI, NSGA-III, Hype, MSOPS and LMEA, the experimental results show that the performance of DS strategy is significantly higher than that of NSGA-II and SPEA2 algorithms. DS-NSGAII has strong competitiveness compared with the existing classic high-dimensional multi-target algorithm.
KEYWORDS
High-dimensional multi-objective optimization, Decision space, Directed search, Convergence subspace, Distributed subspaceCITE THIS PAPER
Peng Wang, High-Dimensional Multi-Objective Optimization Strategy Based on Decision Space Oriented Search, Cloud and Service-Oriented Computing (2019) Vol. 1: 1-6. DOI: http://dx.doi.org/10.23977/csoc.2019.11001.
REFERENCES
[1] Zheng JH. (2017) Multi-Objective Evolutionary Algorithm and its Application, Beijing: National Defence Industry Press, 108-122
[2] Deb K. (2016) Real-coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and dMultiobjective Problems, Complex Systems, 7, 68-89.
[3] Zitzler E. (2004) A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Transactions on Evolutionary Computation, 6, 712-731.
Downloads: | 219 |
---|---|
Visits: | 18555 |
Sponsors, Associates, and Links
-
Power Systems Computation
-
Internet of Things (IoT) and Engineering Applications
-
Computing, Performance and Communication Systems
-
Journal of Artificial Intelligence Practice
-
Advances in Computer, Signals and Systems
-
Journal of Network Computing and Applications
-
Journal of Web Systems and Applications
-
Journal of Electrotechnology, Electrical Engineering and Management
-
Journal of Wireless Sensors and Sensor Networks
-
Journal of Image Processing Theory and Applications
-
Mobile Computing and Networking
-
Vehicle Power and Propulsion
-
Frontiers in Computer Vision and Pattern Recognition
-
Knowledge Discovery and Data Mining Letters
-
Big Data Analysis and Cloud Computing
-
Electrical Insulation and Dielectrics
-
Crypto and Information Security
-
Journal of Neural Information Processing
-
Collaborative and Social Computing
-
International Journal of Network and Communication Technology
-
File and Storage Technologies
-
Frontiers in Genetic and Evolutionary Computation
-
Optical Network Design and Modeling
-
Journal of Virtual Reality and Artificial Intelligence
-
Natural Language Processing and Speech Recognition
-
Journal of High-Voltage
-
Programming Languages and Operating Systems
-
Visual Communications and Image Processing
-
Journal of Systems Analysis and Integration
-
Knowledge Representation and Automated Reasoning
-
Review of Information Display Techniques
-
Data and Knowledge Engineering
-
Journal of Database Systems
-
Journal of Cluster and Grid Computing
-
Journal of Networking, Architecture and Storage
-
Journal of Software Engineering and Metrics
-
Visualization Techniques
-
Journal of Parallel and Distributed Processing
-
Journal of Modeling, Analysis and Simulation
-
Journal of Privacy, Trust and Security
-
Journal of Cognitive Informatics and Cognitive Computing
-
Lecture Notes on Wireless Networks and Communications
-
International Journal of Computer and Communications Security
-
Journal of Multimedia Techniques
-
Automation and Machine Learning
-
Computational Linguistics Letters
-
Journal of Computer Architecture and Design
-
Journal of Ubiquitous and Future Networks