Education, Science, Technology, Innovation and Life
Open Access
Sign In

Non-invasive blood glucose sensors based on electromagnetic wave

Download as PDF

DOI: 10.23977/acss.2023.070510 | Downloads: 54 | Views: 578

Author(s)

Wenqi Wu 1, Yixin Yan 1, Junquan Qi 1

Affiliation(s)

1 Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin, 150080, China

Corresponding Author

Yixin Yan

ABSTRACT

Low-cost, reusable, highly compliant and non-invasive blood glucose sensors (NIBGS) are necessary for current and future medical systems. This review aims to introduce various NIBGS with wide application prospect and focus on electromagnetic wave-based NIBGS. The main introduction is based on Near-infrared spectroscopy-based, Raman spectroscopy-based and microwave-based sensors. The basic working principle of each type of sensor is explained, and their structure, detection accuracy, detection range and detection site are also summarized. The improvements and impacts made by various types of non-invasive testing applications are also analyzed. Several commonly used performance evaluation methods of non-invasive blood glucose monitoring (NIBGM) are introduced. With the development of electronic device and intelligent algorithms, NIBGM will continue to expand its advantages, and the creation of new practical applications will greatly improve the healthcare environment and bring great convenience to the lifestyle of patients with diabetes.

KEYWORDS

Diabetes; Healthcare; Electromagnetic wave sensor; Non-invasive blood glucose monitoring

CITE THIS PAPER

Wenqi Wu, Yixin Yan, Junquan Qi, Non-invasive blood glucose sensors based on electromagnetic wave. Advances in Computer, Signals and Systems (2023) Vol. 7: 65-79. DOI: http://dx.doi.org/10.23977/acss.2023.070510.

REFERENCES

[1] Johnston, L., Wang, G., Hu, K., Qian, C., Liu, G. Advances in Biosensors for Continuous Glucose Monitoring Towards Wearables. Front Bioeng Biotechnol 2021, 9, 733810, doi:10. 3389/fbioe. 2021. 733810. 
[2] Kim, J., Campbell, A. S., Wang, J. Wearable non-invasive epidermal glucose sensors: A review. Talanta 2018, 177, 163-170, doi:10. 1016/j. talanta. 2017. 08. 077. 
[3] Chen, Y., Lu, S., Zhang, S., Li, Y., Qu, Z., Chen, Y., Lu, B., Wang, X., Feng, X. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Science Advances 2017, 3, doi: 10. 1126/ sciadv. 1701629. 
[4] Lin, X., Xu, Y., Pan, X., Xu, J., Ding, Y., Sun, X., Song, X., Ren, Y., Shan, P. F. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep 2020, 10, 14790, doi:10. 1038/s41598-020-71908-9. 
[5] Rachim, V. P., Chung, W. -Y. Wearable-band type visible-near infrared optical biosensor for non-invasive blood glucose monitoring. Sensors and Actuators B: Chemical 2019, 286, 173-180, doi:10. 1016/j. snb. 2019. 01. 121. 
[6] Bandodkar, A. J., Jia, W., Yardimci, C., Wang, X., Ramirez, J., Wang, J. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal Chem 2015, 87, 394-398, doi:10. 1021/ac504300n. 
[7] Lee, H., Song, C., Hong, Y. S., Kim, M., Cho, H. R., Kang, T., Shin, K., Choi, S. H., Hyeon, T., Kim, D. H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv 2017, 3, e1601314, doi:10. 1126/sciadv. 1601314. 
[8] Zafar, H., Channa, A., Jeoti, V., Stojanovic, G. M. Comprehensive Review on Wearable Sweat-Glucose Sensors for Continuous Glucose Monitoring. Sensors (Basel) 2022, 22, doi:10. 3390/s22020638. 
[9] American Diabetes, A. Diagnosis and classification of diabetes mellitus. Diabetes Care 2013, 36 Suppl 1, S67-74, doi:10. 2337/dc13-S067. 
[10] Alberti, K. G. M. M., Zimmet, P. Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabetic Medicine 1998, 15, 539-553, doi:10. 1002/(sici)1096-9136(199807)15:7<539::Aid-dia668>3. 0. Co, 2-s. 
[11] Donelli, M., Espa, G., Feraco, P., Manekiya, M. Wearable non‐invasive blood glucose monitor system based on galvanic skin resistance measurement. Electronics Letters 2021, 57, 901-902, doi:10. 1049/ell2. 12315. 
[12] Aggidis, A. G., Newman, J. D., Aggidis, G. A. Investigating pipeline and state of the art blood glucose biosensors to formulate next steps. Biosens Bioelectron 2015, 74, 243-262, doi:10. 1016/j. bios. 2015. 05. 071. 
[13] Lee, H., Hong, Y. J., Baik, S., Hyeon, T., Kim, D. H. Enzyme-Based Glucose Sensor: From Invasive to Wearable Device. Adv Healthc Mater 2018, 7, e1701150, doi:10. 1002/adhm. 201701150. 
[14] Pandey, R., Paidi, S. K., Valdez, T. A., Zhang, C., Spegazzini, N., Dasari, R. R., Barman, I. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy. Acc Chem Res 2017, 50, 264-272, doi:10. 1021/acs. accounts. 6b00472. 
[15] Makaram, P., Owens, D., Aceros, J. Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies. Diagnostics (Basel) 2014, 4, 27-46, doi:10. 3390/diagnostics4020027. 
[16] Zhang, S., Zeng, J., Wang, C., Feng, L., Song, Z., Zhao, W., Wang, Q., Liu, C. The Application of Wearable Glucose Sensors in Point-of-Care Testing. Front Bioeng Biotechnol 2021, 9, 774210, doi:10. 3389/fbioe. 2021. 774210. 
[17] Xuan, X., Yoon, H. S., Park, J. Y. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens Bioelectron 2018, 109, 75-82, doi:10. 1016/j. bios. 2018. 02. 054. 
[18] Mamilov, S., Velyhotskyi, D., Yesman, S., Mysiura, A., Bekh, I., Gisbrecht, A. Non-Invasive Assessment of Blood Glucose Changes with Near Infrared Sensor. In Proceedings of the 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), 2020, pp. 536-540. 
[19] Omer, A. E., Shaker, G., Safavi-Naeini, S., Alquie, G., Deshours, F., Kokabi, H., Shubair, R. M. Non-Invasive Real-Time Monitoring of Glucose Level Using Novel Microwave Biosensor Based on Triple-Pole CSRR. IEEE Trans Biomed Circuits Syst 2020, 14, 1407-1420, doi:10. 1109/TBCAS. 2020. 3038589. 
[20] Li, Q., Xiao, X., Kikkawa, T. Absorption spectrum for non-invasive blood glucose concentration detection by microwave signals. Journal of Electromagnetic Waves and Applications 2019, 33, 1093-1106, doi: 10. 1080/ 09205071. 2019. 1596168. 
[21] Zheng, L., Liu, Y., Zhang, C. A sample-to-answer, wearable cloth-based electrochemical sensor (WCECS) for point-of-care detection of glucose in sweat. Sensors and Actuators B: Chemical 2021, 343, doi:10. 1016/j. snb. 2021. 130131. 
[22] Guo, S., Wu, K., Li, C., Wang, H., Sun, Z., Xi, D., Zhang, S., Ding, W., Zaghloul, M. E., Wang, C., et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 2021, 4, 969-985, doi: 10. 1016/ j. matt. 2020. 12. 002. 
[23] Xue, Y., Thalmayer, A. S., Zeising, S., Fischer, G., Lubke, M. Commercial and Scientific Solutions for Blood Glucose Monitoring-A Review. Sensors (Basel) 2022, 22, doi:10. 3390/s22020425. 
[24] Elsherif, M., Hassan, M. U., Yetisen, A. K., Butt, H. Wearable Contact Lens Biosensors for Continuous Glucose Monitoring Using Smartphones. ACS Nano 2018, 12, 5452-5462, doi:10. 1021/acsnano. 8b00829. 
[25] Kownacka, A. E., Vegelyte, D., Joosse, M., Anton, N., Toebes, B. J., Lauko, J., Buzzacchera, I., Lipinska, K., Wilson, D. A., Geelhoed-Duijvestijn, N., et al. Clinical Evidence for Use of a Noninvasive Biosensor for Tear Glucose as an Alternative to Painful Finger-Prick for Diabetes Management Utilizing a Biopolymer Coating. Biomacromolecules 2018, 19, 4504-4511, doi:10. 1021/acs. biomac. 8b01429. 
[26] Yadav, J., Rani, A., Singh, V., Murari, B. M. Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy. Biomedical Signal Processing and Control 2015, 18, 214-227, doi: 10. 1016/ j. bspc. 2015. 01. 005. 
[27] Sabu, C., Henna, T. K., Raphey, V. R., Nivitha, K. P., Pramod, K. Advanced biosensors for glucose and insulin. Biosens Bioelectron 2019, 141, 111201, doi:10. 1016/j. bios. 2019. 03. 034. 
[28] Tiwari, N. K., Singh, S. P., Mondal, D., Akhtar, M. J. Flexible biomedical RF sensors to quantify the purity of medical grade glycerol and glucose concentrations. International Journal of Microwave and Wireless Technologies 2019, 12, 120-130, doi:10. 1017/s1759078719001089. 
[29] Zhang, R., Liu, S., Jin, H., Luo, Y., Zheng, Z., Gao, F., Zheng, Y. Noninvasive Electromagnetic Wave Sensing of Glucose. Sensors (Basel) 2019, 19, doi:10. 3390/s19051151. 
[30] Shende, P., Sahu, P., Gaud, R. A technology roadmap of smart biosensors from conventional glucose monitoring systems. Ther Deliv 2017, 8, 411-423, doi:10. 4155/tde-2017-0012. 
[31] Scognamiglio, V., Arduini, F. The technology tree in the design of glucose biosensors. TrAC Trends in Analytical Chemistry 2019, 120, doi:10. 1016/j. trac. 2019. 115642. 
[32] Villena Gonzales, W., Mobashsher, A. T., Abbosh, A. The Progress of Glucose Monitoring-A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors (Basel) 2019, 19, doi:10. 3390/s19040800. 
[33] Takeuchi, R., Nagao, K., Miyamoto, H. Proposal of Blood Glucose Control and Exercise Therapy Support System Using Non-invasive Blood Glucose Meter. Pertanika Journal of Science and Technology 2020, 28, doi:10. 47836/pjst. 28. s2. 02. 
[34] Chowdhury, S. R., Nandi, B., Mondal, P. A Non-Invasive Blood Insulin and Glucose Monitoring System Based on Near-Infrared Spectroscopy with Remote Data Logging. In Proceedings of the 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS), 2018, pp. 274-279. 
[35] Barman, I., Singh, G. P., Dasari, R. R., Feld, M. S., Vaidyan, V. K., Jayakumar, V. S. Transcutaneous Measurement of Blood Analyte Concentration Using Raman Spectroscopy. In Proceedings of the AIP Conference Proceedings, 2008, pp. 33-37. 
[36] Li, N., Zang, H., Sun, H., Jiao, X., Wang, K., Liu, T. C., Meng, Y. A Noninvasive Accurate Measurement of Blood Glucose Levels with Raman Spectroscopy of Blood in Microvessels. Molecules 2019, 24, doi:10. 3390/molecules24081500. 
[37] Izatt, J. A., Fujimoto, J. G., Tuchin, V. V., De Pretto, L. R., Yoshimura, T. M., Ribeiro, M. S., de Freitas, A. Z. Optical coherence tomography for blood glucose monitoring through signal attenuation. In Proceedings of the Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX, 2016. 
[38] Esenaliev, R. O., Larin, K. V., Larina, I. V., Motamedi, M. Noninvasive monitoring of glucose concentration with optical coherence tomography. Opt Lett 2001, 26, 992-994, doi:10. 1364/ol. 26. 000992. 
[39] Tanaka, Y., Tajima, T., Seyama, M., Waki, K. Differential Continuous Wave Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring. IEEE Sensors Journal 2020, 20, 4453-4458, doi:10. 1109/jsen. 2019. 2962251. 
[40] Sim, J. Y., Ahn, C. G., Jeong, E. J., Kim, B. K. In vivo Microscopic Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring Invulnerable to Skin Secretion Products. Sci Rep 2018, 8, 1059, doi:10. 1038/s41598-018-19340-y. 
[41] Song, K., Ha, U., Park, S., Bae, J., Yoo, H. -J. An Impedance and Multi-Wavelength Near-Infrared Spectroscopy IC for Non-Invasive Blood Glucose Estimation. IEEE Journal of Solid-State Circuits 2015, 50, 1025-1037, doi:10. 1109/jssc. 2014. 2384037. 
[42] Mueller, M., Grunze, M., Leiter, E. H., Reifsnyder, P. C., Klueh, U., Kreutzer, D. Non-invasive glucose measurements in mice using mid-infrared emission spectroscopy. Sensors and Actuators B: Chemical 2009, 142, 502-508, doi:10. 1016/j. snb. 2009. 08. 048. 
[43] Landgrebe, D., Haake, C., Hopfner, T., Beutel, S., Hitzmann, B., Scheper, T., Rhiel, M., Reardon, K. F. On-line infrared spectroscopy for bioprocess monitoring. Appl Microbiol Biotechnol 2010, 88, 11-22, doi:10. 1007/s00253-010-2743-8. 
[44] Yu, Y., Huang, J. -P., Zhu, J., Liang, S. -L. An Accurate Noninvasive Blood Glucose Measurement System Using Portable Near-Infrared Spectrometer and Transfer Learning Framework. IEEE Sensors Journal 2020, 1-1, doi:10. 1109/jsen. 2020. 3025826. 
[45] Yang, W., Liao, N., Cheng, H., Li, Y., Bai, X., Deng, C. Determination of NIR informative wavebands for transmission non-invasive blood glucose measurement using a Fourier transform spectrometer. AIP Advances 2018, 8, doi:10. 1063/1. 5017169. 
[46] Peng, X., Yan, Y. -X., Liu, H. On the use of fiber lasers in non-invasive blood glucose monitoring. Optical Fiber Technology 2022, 68, doi:10. 1016/j. yofte. 2022. 102822. 
[47] Turgul, V., Kale, I. Permittivity extraction of glucose solutions through artificial neural networks and non-invasive microwave glucose sensing. Sensors and Actuators A: Physical 2018, 277, 65-72, doi:10. 1016/j. sna. 2018. 03. 041. 
[48] Tuchin, V. V., Jiang, J., Duncan, D. D., Zou, D., Min, X., Larin, K. V., Leahy, M. J., Ma, Z., Xu, K., Wang, R. K. Monte Carlo simulation on the effect of dermal thickness variances on noninvasive blood glucose sensing. In Proceedings of the Dynamics and Fluctuations in Biomedical Photonics X, 2013. 
[49] Han, G., Chen, S., Wang, X., Wang, J., Wang, H., Zhao, Z. Noninvasive blood glucose sensing by near-infrared spectroscopy based on PLSR combines SAE deep neural network approach. Infrared Physics & Technology 2021, 113, doi:10. 1016/j. infrared. 2020. 103620. 
[50] Ionescu, M., Doctorala, S. Measuring and detecting blood glucose by methods non-invasive. In Proceedings of the 2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2018, pp. 1-7. 
[51] Tuchin, V. V., Min, X., Duncan, D. D., Jiang, J., Zou, D., Larin, K. V., Leahy, M. J., Liu, R., Xu, K., Wang, R. K. Simulation on how to customize glucose adjustment method for non-invasive blood glucose sensing by NIRS. In Proceedings of the Dynamics and Fluctuations in Biomedical Photonics X, 2013. 
[52] Popp, J., Ben Mohammadi, L., Drexler, W., Sigloch, S., Frese, I., Tuchin, V. V., Matthews, D. L., Stein, V., Welzel, K., Schmitz, F., et al. A minimally invasive chip based near infrared sensor for continuous glucose monitoring. In Proceedings of the Biophotonics: Photonic Solutions for Better Health Care III, 2012. 
[53] Coté, G. L., Ooi, E. T., Priezzhev, A. V., Zhang, X. Q., Chen, J. H., Soh, P. H., Ng, K., Yeo, J. H. Noninvasive blood glucose measurement using multiple laser diodes. In Proceedings of the Optical Diagnostics and Sensing VII, 2007. 
[54] Luo, Q., Li, X., Gu, Y., Tang, Y., Han, G., Liu, J., Liu, R., Xu, K. Determination of the reference position in the near-infrared non-invasive blood glucose measurement in vivo. In Proceedings of the Optics in Health Care and Biomedical Optics VII, 2016. 
[55] Ali, H., Bensaali, F., Jaber, F. Novel Approach to Non-Invasive Blood Glucose Monitoring Based on Transmittance and Refraction of Visible Laser Light. IEEE Access 2017, 5, 9163-9174, doi:10. 1109/access. 2017. 2707384. 
[56] Uwadaira, Y., Ikehata, A., Momose, A., Miura, M. Identification of informative bands in the short-wavelength NIR region for non-invasive blood glucose measurement. Biomed Opt Express 2016, 7, 2729-2737, doi: 10. 1364/ BOE. 7. 002729. 
[57] Jenie, R. P., Iskandar, J., Kurniawan, A., Rustami, E., Syafutra, H., Nurdin, N. M., Handoyo, T., Prabowo, J., Febryarto, R., Rahayu, M. S. K., et al. Proposed Application of Fast Fourier Transform in Near Infra Red Based Non Invasive Blood Glucose Monitoring System. IOP Conference Series: Earth and Environmental Science 2017, 58, doi: 10. 1088/ 1755-1315/58/1/012011. 
[58] Zapasnoy, A. S., Belichenko, V. P., Yakubov, V. P., Gorst, A. V., Mironchev, A. S., Klokov, A. V., Zavyalova, K. V. Application of Broadband Microwave Near-Field Sensors for Glucose Monitoring in Biological Media. Applied Sciences 2021, 11, doi:10. 3390/app11041470. 
[59] Luo, Q., Li, X., Gu, Y., Tang, Y., Guo, C., Han, T., Zhang, Z., Sun, D., Liu, J. Optimization on source detector distance for the glucose sensing in a tissue phantom using near-infrared diffuse spectra. In Proceedings of the Optics in Health Care and Biomedical Optics VII, 2016. 
[60] Cano-Garcia, H., Kshirsagar, R., Pricci, R., Teyeb, A., O'Brien, F., Saha, S., Kosmas, P., Kallos, E. Enhancing the Accuracy of Non-Invasive Glucose Sensing in Aqueous Solutions Using Combined Millimeter Wave and Near Infrared Transmission. Sensors (Basel) 2021, 21, doi:10. 3390/s21093275. 
[61] Srichan, C., Srichan, W., Danvirutai, P., Ritsongmuang, C., Sharma, A., Anutrakulchai, S. Non-invasively accuracy enhanced blood glucose sensor using shallow dense neural networks with NIR monitoring and medical features. Sci Rep 2022, 12, 1769, doi:10. 1038/s41598-022-05570-8. 
[62] Wang, D. An improved integration sensor of non-invasive blood glucose. In Proceedings of the The 7th IEEE/International Conference on Advanced Infocomm Technology, 2014, pp. 70-75. 
[63] Shokrekhodaei, M., Quinones, S. Review of Non-invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone. Sensors (Basel) 2020, 20, doi:10. 3390/s20051251. 
[64] Wrobel, M. S., Kim, J. H., Raj, P., Barman, I., Smulko, J. Utilizing pulse dynamics for non-invasive Raman spectroscopy of blood analytes. Biosens Bioelectron 2021, 180, 113115, doi:10. 1016/j. bios. 2021. 113115. 
[65] Lundsgaard-Nielsen, S. M., Pors, A., Banke, S. O., Henriksen, J. E., Hepp, D. K., Weber, A. Critical-depth Raman spectroscopy enables home-use non-invasive glucose monitoring. PLoS One 2018, 13, e0197134, doi:10. 1371/journal. pone. 0197134. 
[66] Dingari, N. C., Barman, I., Singh, G. P., Kang, J. W., Dasari, R. R., Feld, M. S. Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements. Anal Bioanal Chem 2011, 400, 2871-2880, doi:10. 1007/s00216-011-5004-5. 
[67] Kiani, S., Rezaei, P., Fakhr, M. Dual-Frequency Microwave Resonant Sensor to Detect Noninvasive Glucose-Level Changes Through the Fingertip. IEEE Transactions on Instrumentation and Measurement 2021, 70, 1-8, doi:10. 1109/tim. 2021. 3052011. 
[68] Govind, G., Akhtar, M. J. Metamaterial-Inspired Microwave Microfluidic Sensor for Glucose Monitoring in Aqueous Solutions. IEEE Sensors Journal 2019, 19, 11900-11907, doi:10. 1109/jsen. 2019. 2938853. 
[69] Mhatre, P. J., Joshi, M. Human body model with blood flow properties for non-invasive blood glucose measurement. Biomedical Signal Processing and Control 2022, 72, doi:10. 1016/j. bspc. 2021. 103271. 
[70] Jean, B. R., Green, E. C., McClung, M. J., Ieee. A microwave frequency sensor for non-invasive blood-glucose measurement. In Proceedings of the 3rd IEEE Sensors Applications Symposium, Atlanta, GA, Feb 12-14, 2008, pp. 4-7. 
[71] Baghelani, M., Abbasi, Z., Daneshmand, M., Light, P. E. Non-invasive continuous-time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators. Sci Rep 2020, 10, 12980, doi:10. 1038/s41598-020-69547-1. 
[72] Choi, H., Naylon, J., Luzio, S., Beutler, J., Birchall, J., Martin, C., Porch, A. Design and In Vitro Interference Test of Microwave Noninvasive Blood Glucose Monitoring Sensor. IEEE Trans Microw Theory Tech 2015, 63, 3016-3025, doi:10. 1109/TMTT. 2015. 2472019. 
[73] Vrba, J., Vrba, D., Díaz, L., Fišer, O. Metamaterial Sensor for Microwave Non-invasive Blood Glucose Monitoring. In World Congress on Medical Physics and Biomedical Engineering 2018, IFMBE Proceedings, 2019, pp. 789-792. 
[74] Yilmaz, T., Foster, R., Hao, Y. Radio-Frequency and Microwave Techniques for Non-Invasive Measurement of Blood Glucose Levels. Diagnostics (Basel) 2019, 9, doi:10. 3390/diagnostics9010006. 
[75] Omer, A. E., Shaker, G., Safavi-Naeini, S., Kokabi, H., Alquie, G., Deshours, F., Shubair, R. M. Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: novel design utilizing a four-cell CSRR hexagonal configuration. Sci Rep 2020, 10, 15200, doi:10. 1038/s41598-020-72114-3. 
[76] Turgul, V., Kale, I., Ieee. A Novel Pressure Sensing Circuit for Non-invasive RF/Microwave Blood Glucose Sensors. In Proceedings of the 16th Mediterranean Microwave Symposium (MMS), Abu Dhabi, U ARAB EMIRATES, Nov 14-16, 2016. 
[77] Clarke, W. L., Cox, D., Gonder-Frederick, L. A., Carter, W., Pohl, S. L. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care 1987, 10, 622-628, doi:10. 2337/diacare. 10. 5. 622.

Downloads: 13504
Visits: 258902

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.