Education, Science, Technology, Innovation and Life
Open Access
Sign In

Research on the Progress of Autonomous Technology in Robot Assisted Surgery

Download as PDF

DOI: 10.23977/acss.2023.070704 | Downloads: 39 | Views: 531

Author(s)

Liu Dapeng 1

Affiliation(s)

1 SMU, Singapore Management University, 574045, Singapore

Corresponding Author

Liu Dapeng

ABSTRACT

Since the introduction of robotics technology into the operating room in the mid-1980s, doctors and researchers have been seeking to integrate higher intelligent technologies with robotic systems. Compared with conventional surgeries, surgical robot systems with higher intelligence often require higher security and accuracy, and can make decision adjustments through matching perception systems and the current surgical stage. Although a fully autonomous surgical robot system is still some distance from true clinical use. But with the accumulation and development of technology, robot intelligence technology with semi autonomy and partial doctor participation in decision-making will gradually be introduced into the operating room, providing a better platform for clinical surgery. This article mainly summarizes and prospects the current progress of robot assisted surgery and related intelligent technologies.

KEYWORDS

Surgical robots; Autonomous operation; artificial intelligence

CITE THIS PAPER

Liu Dapeng, Research on the Progress of Autonomous Technology in Robot Assisted Surgery. Advances in Computer, Signals and Systems (2023) Vol. 7: 30-41. DOI: http://dx.doi.org/10.23977/acss.2023.070704.

REFERENCES

[1] Yang G Z, Cambias J, Cleary K, et al. Medical robotics—regulatory, ethical, and legal considerations for increasing levels of autonomy [J]. Sci Robot, 2017, 2(4): 8638.
[2] Haidegger T. Autonomy for surgical robots: concepts and paradigms [J]. IEEE Trans Med Robot Bionics, 2019, 1(2): 65-76.
[3] Shen Tong, Song Chengli, Xu Zhaohong. Kinematics Modeling and Optimization of New Hybrid Laparoscopy Robot [J]. Mechanical Science and Technology, 2016, 35 (1): 56-62
[4] Degani A, Choset H, Wolf A, et al. Highly articulated robotic probe for minimally invasive surgery[C]// Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. Piscataway: IEEE, 2006: 4167-4172.
[5] Ota T, Degani A, Schwartzman D, et al. A highly articulated robotic surgical system for minimally invasive surgery[J]. Ann Thorac Surg, 2009, 87(4): 1253-1256.
[6] Xu K, Zhao J R, Fu M X. Development of the SJTU unfoldable robotic system (SURS) for single port laparoscopy[J]. IEEE ASME Trans Mechatron, 2014, 20(5): 2133-2145.
[7] Kim Y H, Park Y J, In H K, et al. Design concept of hybrid instrument for laparoscopic surgery and its verification using scale model test [J]. IEEE ASME Trans Mechatron, 2015, 21(1): 142-153.
[8] Breedveld P, Stassen H G, Meijer D W, et al. Manipulation in laparoscopic surgery: overview of impeding effects and supporting aids [J]. J Laparoendosc Adv Surg Tech A, 1999, 9(6): 469-480.
[9] Manzey D, Strauss G, Trantakis C, et al. Automation in surgery: a systematic approach [J]. Surg Technol Int, 2009, PMID: 19579188.
[10] Harris S J, Arambula-Cosio F, Mei Q, et al. The Probot—an active robot for prostate resection[J]. Proc Inst Mech Eng H, 1997, 211(4): 317-325.
[11] Mei Q, Harris S J, Arambula-Cosio F, et al. PROBOT— a computer integrated prostatectomy system[C]// In International Conference on Visualization in Biomedical Computing. Berlin, Heidelberg: Springer, 1996: 581-590.
[12] Rodriguez Y, Baena F, Davies B. Robotic surgery: from autonomous systems to intelligent tools[J]. Robotica, 2010, 28(2): 163-170.
[13] Jakopec M, Harris S J, Baena y, et al. Acrobot: a “hands- on” robot for total knee replacement surgery[C]// In 7th International Workshop on Advanced Motion Control. Proceedings (Cat. No. 02TH8623). Piscataway: IEEE. 2002: 116-120. 
[14] Hagag B, Abovitz R, Kang H, et al. RIO: Robotic- arm interactive orthopedic system MAKOplasty: user interactive haptic orthopedic robotics [M]. Boston, MA: Springer, 2011: 219-246.
[15] Eggers G, Muhling J, Marmulla R. Image-to-patient registration techniques in head surgery[J]. Int J Oral Maxillofac Surg, 2006, 35(12): 1081-1095.
[16] Moustris G P, Hiridis S C, Deliparaschos K M, et al. Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature[J]. Int J Med Robot, 2011, 7(4): 375-392.
[17] Sayeh S, Wang J, Main W T, et al. Respiratory motion tracking for robotic radiosurgery. In Treating tumors that move with respiration [M]. Berlin, Heidelberg: Springer, 2007: 15-29.
[18] Chen Z H, Deguet A, Taylor R, et al. An open-source hardware and software platform for telesurgical robotics research [J]. SACAI Workshop at MICCAI 2013, 2013. DOI: 10.54294/2dcog6.
[19] Murali A, Sen S, Kehoe B, et al. Learning by observation for surgical subtasks: multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms[C]// In 2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE. 2015: 1202¬1209. (Mural et al., 2015)
[20] Hannaford B, Rosen J, Friedman D W, et al. Raven-II: an open platform for surgical robotics research[J]. IEEE Trans Biomed Eng, 2012, 60(4): 954-959.
[21] Hu D, Gong Y, Hannaford B, et al. Semi-autonomous simulated brain tumor ablation with RAVEN II surgical robot using behavior tree [C]// In 2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2015: 3868-3875.
[22] Kehoe B, Kahn G, Mahler J, et al. Autonomous multilateral debridement with the raven surgical robot[C]// In 2014 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2014: 1432-1439.
[23] Su H, Danioni A, Mira R M, et al. Experimental validation of manipulability optimization control of a 7-DoF serial manipulator for robot-assisted surgery[J]. Int J Med Robot, 2021, 17(1): 1-11.
[24] Maris B, Tenga C, Vicario R, et al. Toward autonomous robotic prostate biopsy: a pilot study[J]. Int J Comput Assist Radiol Surg, 2021. DOI: 10.1007/s11548-021- 02437-7.
[25] Tang A, Cao Q, Tan H, et al. Motion Control of a Master-Slave Minimally Invasive Surgical Robot based on the Hand-Eye-Coordination. In Computer Aided Surgery [M]. Tokyo: Springer, 2016: 57-71.
[26] Luo D, Liu Y, Zhu H, et al. The Micro Hand S robotic-assisted versus Da Vinci robotic-assisted radical resection for patients with sigmoid colon cancer: a single-center retrospective study[J]. Surg Endosc, 2020, 34(8): 3368-3374.
[27] Li C, Gu X, Xiao X, et al. Flexible robot with variable stiffness in transoral surgery[J]. IEEE ASME Trans Mechatron, 2019, 25(1): 1-10.
[28] Yuan X, Liu D, Gong M. Design and research on a shape memory alloy-actuated single-port laparoscopic surgical robot [C]// 2014 IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE, 2014: 1654-1658.
[29] Eastwood K, Looi T, Naguib H E, et al. Fluidic actuators for minimally invasive neurosurgical instruments[C]// In The Hamlyn Symposium on Medical Robotics. 2014: 75.
[30] Garbin N, Di Natali C, Buzzi J, et al. Laparoscopic tissue retractor based on local magnetic actuation [J]. J Med Device, 2015, 9(1): 011005.
[31] Penza V, Ortiz J, Mattos L S, et al. Dense soft tissue 3D reconstruction refined with super-pixel segmentation for robotic abdominal surgery[J]. Int J Comput Assist Radiol Surg, 2016, 11(2): 197-206.
[32] Bebek O, Cavusoglu M C. Intelligent control algorithms for robotic-assisted beating heart surgery [J]. IEEE Trans Robot, 2007, 23(3): 468-480.
[33] Cheng Z, Dall'Alba D, F oti S, et al. Design and integration of electrical bio-impedance sensing in surgical robotic tools for tissue identification and display[J]. Front Robot AI, 2019. DOI: 10.3389/ frobt.2019.00055.
[34] Cheng Z Q, Schwaner K L, Dall' Alba D, et al. An electrical bioimpedance scanning system for subsurface tissue detection in robot assisted minimally invasive surgery [J]. IEEE Trans Biomed Eng, 2021. DOI: 10.1109/TBME. 2021.3091326.
[35] Salman H, Ayvali E, Srivatsan R A, et al. Trajectory- optimized sensing for active search of tissue abnormalities in robotic surgery[C]// In 2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2018: 5356-5363.
[36] Garg A, Sen S, Kapadia R, et al. Tumor localization using automated palpation with gaussian process adaptive sampling [C]// In 2016 IEEE International Conference on Automation Science and Engineering (CASE), Piscataway: IEEE, 2016: 194-200.
[37] Yan Y, Pan J. Fast Localization and Segmentation of Tissue Abnormalities by Autonomous Robotic Palpation [J]. IEEE Robot Autom Lett, 2021, 6(2): 1707¬1714.
[38] Li Y, Richter F, Lu J, et al. Super: A surgical perception framework for endoscopic tissue manipulation with surgical robotics [J]. IEEE Robot Autom Lett, 2020, 5(2): 2294-2301.
[39] Rosen J, Hannaford B, Satava R M. Medical devices: surgical and image guided technologies [M]. Wiley, 2011: 301-306.
[40] Chen Y, Wu Z, Yang B, et al. Review of surgical robotic systems for keyhole and endoscopic procedures: state of the art and perspective [J]. Front Med, 2020, 14(4): 382-403.
[41] Simorov A, Otte R S, Kopietz C M, et al. Review of surgical robotics user interface: what is the best way to control robotic surgery?[J]. Surg Endosc, 2012, 26(8): 2117-2125.
[42] Zhao Y, Xing H, Guo S, et al. A novel noncontact detection method of surgeon's operation for a master¬slave endovascular surgery robot [J]. Med Biol Eng Comput, 2020, 58(4): 871-885.
[43] Ruszkowski A, Mohareri O, Lichtenstein S, et al. On the feasibility of heart motion compensation on the daVinci® surgical robot for coronary artery bypass surgery: Implementation and user studies[C]// In 2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2015: 4432-4439.
[44] Yuen S G, Kettler D T, Novotny P M, et al. Robotic motion compensation for beating heart intracardiac surgery [J]. Int J Rob Res, 2009, 28(10): 1355-1372.
[45] Krupa A, Gangloff J, Doignon C, et al. Autonomous 3-D positioning of surgical instruments in robotized laparoscopic surgery using visual servoing [J]. IEEE Trans Rob Autom, 2003, 19(5): 842-853.
[46] Kehoe B, Kahn G, Mahler J, et al. Autonomous multilateral debridement with the raven surgical robot[C]// In 2014 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2014: 1432-1439.
[47] Marb an A, Casals A, Fernandez J, et al. Haptic feedback in surgical robotics: Still a challenge [C]// In ROBOT2013: First Iberian Robotics Conference. Cham, Switzerland: Springer. 2014: 245-253.
[48] Van den Dobbelsteen J J, Lee R A, van Noorden M, et al. Indirect measurement of pinch and pull forces at the shaft of laparoscopic graspers [J]. Med Biol Eng Comput, 2012, 50(3): 215-221.
[49] Wu D, Zhang Y, Ourak M, et al. Hysteresis modeling of robotic catheters based on long short-term memory network for improved environment reconstruction [J]. IEEE Robot Autom Lett, 2021, 6(2): 2106-2113.
[50] Aviles A I, Casals A. On genetic algorithms optimization for heart motion compensation[C]// In ROBOT2013: First Iberian Robotics Conference. Cham, Switzerland: Springer. 2014, 252: 237-244.
[51] Francis P, Eastwood K W, Bodani V, et al. Miniaturized instruments for the da Vinci research kit: design and implementation of custom continuum tools [J]. IEEE Robot Autom Mag, 2017, 24(2): 24-33.
[52] Wu D, Li G, Patel N, et al. Remotely actuated needle driving device for mriguided percutaneous interventions[C]// In 2019 International Symposium on Medical Robotics (ISMR). Piscataway: IEEE, 2019: 1-7.
[53] Ha X T, Ourak M, Al-Ahmad O, et al. Robust catheter tracking by fusing electromagnetic tracking, fiber brag grating and sparse fluoroscopic images [J]. IEEE Sens J, 2021, 21(20): 23422-23434.
[54] Graur F, Frunza M, Elisei R, et al. Ethics in Robotic Surgery and Telemedicine[C]// Pisla D, Ceccarelli M, Husty M, et al. In New Trends in Mechanism Science. Berlin: Springer, 2010: 457-465.

Downloads: 15127
Visits: 267862

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.