Education, Science, Technology, Innovation and Life
Open Access
Sign In

A Study on the Consolidation Characteristics of Sleep on Memory of Different Intensity

Download as PDF

DOI: 10.23977/aetp.2023.071410 | Downloads: 10 | Views: 373

Author(s)

Bingqin Ma 1, Lianyou Li 1

Affiliation(s)

1 Qufu Normal University, Qufu, Jining, Shandong, 273165, China

Corresponding Author

Bingqin Ma

ABSTRACT

Sleep and learning memory belong to the most important basic functions of the brain, and sleep plays an important role in the cognitive function of individuals, and a large number of studies have proved that there is a close relationship between the two, and good sleep can help people consolidate memory. With the deepening of research, according to memory type, memory can be divided into strong memory and weak memory, and many studies have tried to explore the effect of strong and weak memory in sleep-dependent memory consolidation, but a unified theoretical model has not yet been formed. Synthesizing the research results in this field in recent years, we focus on the process of memory consolidation in sleep for strong and weak memories, and briefly introduce the related studies involved. In the future, there is still a need to explore and validate the operation mechanism and application model, so as to provide more theoretical support for the field of memory efficacy and sleep.

KEYWORDS

Sleep; Memory consolidation; Memory intensity

CITE THIS PAPER

Bingqin Ma, Lianyou Li, A Study on the Consolidation Characteristics of Sleep on Memory of Different Intensity. Advances in Educational Technology and Psychology (2023) Vol. 7: 73-80. DOI: http://dx.doi.org/10.23977/aetp.2023.071410.

REFERENCES

[1] Chouhan, N. S., & Sehgal, A. (2022). Consolidation of Sleep-Dependent Appetitive Memory Is Mediated by a Sweet-Sensing Circuit. Journal of Neuroscience, 42(18), 3856-3867. 
[2] Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience. 
[3] Rasch, B., & Born, J. (2013). About Sleep’s Role in Memory. Physiological Reviews, 93(2), 681-766. 
[4] Iber, C., Ancoli-Israel, S., Chesson, A. L., & Quan, S. F. (2007). The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. American Academy of Sleep Medicine Westchester, (1). 
[5] Hobson, J., McCarley, R., & Wyzinski, P. (1975). Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science, 189(4196), 55-58. 
[6] Tronson, N. C., & Taylor, J. R. (2007). Molecular mechanisms of memory reconsolidation. Nature Reviews Neuroscience, 8(4), 262-275. 
[7] McGaugh, James, & L. (2000). Memory—A Century of Consolidation. Science, 287(5451), 248-248. 
[8] Duncan, C. P. (1949). The retroactive effect of electroshock on learning. Journal of Comparative and Physiological Psychology, 42(1), 32-44. 
[9] Mcgaugh, J. L. (1966). Time-dependent processes in memory storage. Science, 8(742), 153-1351. 
[10] Krakauer, J. W., & Shadmehr, R. (2006).Consolidation of motor memory. Trends in neurosciences, 29(1), 58-64. 
[11] Walker, M., Stickgold, R., Alsop, D., Gaab, N., & Schlaug, G.(2005). Sleep-dependent motor memory plasticity in the human brain. Neuroscience, 133(4), 911-917. 
[12] Genzel, L., & Wixted, J. T. (2017). Cellular and Systems Consolidation of Declarative Memory. Studies in Neuroscience, Psychology and Behavioral Economics, 3-16. 
[13] Hughes, R. J., Sack, R. L., & Lewy, A. J. (1997). The role of melatonin and circadian phase in age-related sleep-maintenance insomnia: Assessment in a clinical trial of melatonin replacement. Sleep, 21(1), 52.
[14] Murty, V. P., Tompary, A., Adcock, R. A., & Davachi, L. (2017). Selectivity in Postencoding Connectivity with High-Level Visual Cortex Is Associated with Reward-Motivated Memory. Journal of Neuroscience, 37(3), 537-545. 
[15] Staresina, B. P., Alink, A., Kriegeskorte, N., & Henson, R. N. (2013). Awake reactivation predicts memory in humans. Proceedings of the National Academy of Sciences, 110(52), 21159–21164.
[16] Schlichting, M. L., & Preston, A. R. (2016). Hippocampal-medial prefrontal circuit supports memory updating during learning and post-encoding rest. Neurobiology of Learning and Memory, 134, 91-106. 
[17] Maquet, P., Schwartz, S., Passingham, R., & Frith, C. (2003). Sleep-related consolidation of a visuomotor skill: Brain mechanisms as assessed by functional magnetic resonance imaging. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(4), 1432-1440. 
[18] Walker, M. P. (2004). Issues surrounding sleep-dependent memory consolidation and plasticity. Cellular and Molecular Life Sciences, 61(24), 3009-3015. 
[19] Stefan Fischer, M. H., Eisner, A. L., & Born, J. (2002). Sleep forms memory for finger skills. Proceedings of the National Academy of Sciences of the United States of America, 99(18), 11987-11987. 
[20] Maquet, P., Laureys, S., Peigneux, P., Fuchs, S., Petiau, C., Phillips, C., Aerts, J., Del Fiore, G., Degueldre, C., Meulemans, T., Luxen, A., Franck, G., Van Der Linden, M., Smith, C., & Cleeremans, A. (2000). Experience-dependent changes in cerebral activation during human REM sleep. Nature Neuroscience, 3(8), Article 8. 
[21] Peigneux, P., Laureys, S., Fuchs, S., Destrebecqz, A., Collette, F., Delbeuck, X., Phillips, C., Aerts, J., Del Fiore, G., & Degueldre, C. (2003). Learned material content and acquisition level modulate cerebral reactivation during posttraining rapid-eye-movements sleep. NeuroImage, 20(1), 125-134.
[22] Lo, J. C., Dijk, D.-J., & Groeger, J. A. (2014). Comparing the Effects of Nocturnal Sleep and Daytime Napping on Declarative Memory Consolidation. PLoS ONE, 9(9), e108100. 
[23] Sio, U. N., Monaghan, P., & Ormerod, T. (2013). Sleep on it, butonly if it is difficult: Effects of sleep on problem solving. Memory & Cognition, 41(2), 59e166. 
[24] Kuriyama, K., Stickgold, R., & Walker, M. P. (2013). Sleep-dependent learning and motor-skill complexity. Learning &Memory, 11, 705-713. 
[25] Denis, D., Mylonas, D., Poskanzer, C., Bursal, V., & Stickgold, R. (2020). Sleep spindles facilitate selective memory consolidation. Cold Spring Harbor Laboratory. 
[26] Schapiro, A. C., Mcdevitt, E. A., Chen, L., Norman, K. A., Mednick, S. C., & Rogers, T. T. (2017). Sleep Benefits Memory for Semantic Category Structure While Preserving Exemplar-Specific Information. Scientific Reports, 7(1), 14869. 
[27] Wang, B. (2020). Effect of post-encoding emotion on long-term memory: Modulation of emotion category and memory strength. The Journal of General Psychology, 4, 1-27. 
[28] McDevitt, E. A., Duggan, K. A., & Mednick, S. C. (2015). REM sleeprescues learning from interference. Neurobiology of Learningand Memory, 122, 51-62. 
[29] Wilhelm, I., Diekelmann, S., Molzow, I., Ayoub, A., & Born, J. (2011). Sleep selectively enhances memory expected to be of future relevance. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 31(5), 1563-1569. 
[30] Payne, J. D., Stickgold, R., Swanberg, K., & Kensinger, E. A. (2008). Sleep Preferentially Enhances Memory for Emotional Components of Scenes. SAGE Publications, 8. 
[31] Sterpenich, V., Schie, M. K. M. V., Catsiyannis, M., Ramyead, A., & Schwartz, S. (2021). Reward biases spontaneous neural reactivation during sleep. Nature Communications, 12(1). 
[32] Craik; Robert S. Lockhart (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 0-684. 
[33] Petzka, M., Charest, I., Balanos, G. M., & Staresina, B. P. (2021). Does sleep-dependent consolidation favour weak memories? Cortex, 134, 65-75. 
[34] Schapiro, A. C., McDevitt, E. A., Rogers, T. T., Mednick, S. C., & Norman, K. A. (2018). Human hippocampal replay during rest prioritizes weakly learned information and predicts memory performance. Nature Communications, 9(1), Article 1. 
[35] Bursley, J. K., Nestor, A., Tarr, M. J., & Creswell, J. D. (2016). Awake, Offline Processing during Associative Learning. PLOS ONE, 11(4), e0127522. 
[36] Denis, D., Schapiro, A.C., Poskanzer, C., Bursal, V., Charon, L., Morgan, A., and Stickgold, R (2020). The roles of item exposure and visualization success in the consolidation of memories across wake and sleep. Learning and Memory. 27. 451-456. 
[37] Murray, B. D., & Kensinger, E. A. (2012). The effects of emotion and encoding strategy on associative memory. Memory & Cognition, 40(7), 1056-1069. 
[38] Diekelmann, S., Wilhelm, I., & Born, J. (2009). The whats and whens of sleep-dependent memory consolidation. Sleep Medicine Reviews, 13(5), 309-321. 
[39] Hoddes, E., Dement, W. C., & Zarcone, V. (1972). The development and use of the Stanford sleepiness scale (SSS).Journal of Sleep Research, 1(1):35-39 
[40] Rauchs, G., Feyers, D., Landeau, B., Bastin, C., Luxen, A., Maquet, P., & Collette, F. (2011). Sleep Contributes to the Strengthening of Some Memories Over Others, Depending on Hippocampal Activity at Learning. The Journal of Neuroscience, 31(7), 2563-2568. 
[41] Schapiro, A. C., Reid, A. G., Morgan, A., Manoach, D. S., Verfaellie, M., & Stickgold, R. (2019). The hippocampus is necessary for the consolidation of a task that does not require the hippocampus for initial learning. Hippocampus, 29(11), 1091-1100. 
[42] Baena, D., Cantero, J. L., Lluís Fuentemilla, & Atienza, M. (2020). Weakly encoded memories due to acute sleep restriction can be rescued after one night of recovery sleep. Nature Publishing Group, 1.
[43] Cox, R., Hofman, W. F., & Talamini, L. M. (2012). Involvement of spindles in memory consolidation is slow wave sleep-specific. Learning & Memory, 19(7), 264-267. 
[44] Schabus, M., Gruber, G., Parapatics, S., Sauter, C., Klösch, G., Anderer, P., Klimesch, W., Saletu, B., & Zeitlhofer, J. (2004). Sleep Spindles and Their Significance for Declarative Memory Consolidation. Sleep, 27(8), 1479-1485. 
[45] Schmidt, C., Peigneux, P., Muto, V., Schenkel, M., Knoblauch, V., Münch, M., De Quervain, D. J.-F., Wirz-Justice, A., & Cajochen, C. (2006). Encoding Difficulty Promotes Postlearning Changes in Sleep Spindle Activity during Napping. The Journal of Neuroscience, 26(35), 8976-8982. 
[46] Fernandez, L. M. J., & Luthi, A. (2019). Sleep Spindles: Mechanisms and Functions. Physiological Reviews, 100(2). 
[47] Peyrache, A., & Seibt, J. (2020). A mechanism for learning with sleep spindles. Philosophical Transactions of the Royal Society B Biological Sciences, 375(1799), 20190230. 
[48] Schmidt, C. (2006). Encoding Difficulty Promotes Postlearning Changes in Sleep Spindle Activity during Napping. Journal of Neuroscience, 26(35), 8976-8982. 
[49] Baran, B., Correll, D., Vuper, T. C., Morgan, A., Durrant, S. J., Manoach, D. S., & Stickgold, R. (2018). Spared and impaired sleep-dependent memory consolidation in schizophrenia. Schizophrenia Research, 199, 83-89. 
[50] Antony, J. W., Ferreira, C. S., Norman, K. A., & Wimber, M. (2017).Retrieval as a fast route for consolidation. Trends in CognitiveSciences, 21(8), 573-576. 
[51] Cairney, S. A., Lindsay, S., Sobczak, J. M., Paller, K. A., &Gaskell, M. G. (2016). The benefits of targeted memory reactivation for consolidation in sleep are contingent on memory accuracy and direct cue-memory associations. Sleep, 39(5), 1139-1150. 
[52] Creery, J. D., Oudiette, D., Antony, J. W., & Paller, K. A. (2015). Targeted memory reactivation during sleep depends on prior learning. Sleep, 38(5), 755-763. 
[53] Payne, J. D., Tucker, M. A., Ellenbogen, J. M., Wamsley, E. J., Walker, M. P., Schacter, D. L., & Stickgold, R. (2012). Memory for Semantically Related and Unrelated Declarative Information: The Benefit of Sleep, the Cost of Wake. PLoS ONE, 7(3), e33079. 
[54] Brodt, S., Gais, S., Beck, J., Erb, M., Scheffler, K., & Schönauer, M. (2018). Fast track to the neocortex: A memory engram in the posterior parietal cortex. Science, 362(6418), 1045-1048.

All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.