2012-2022 TRPC6 channel and podocyte research trends: A bibliometric study
DOI: 10.23977/medbm.2024.020110 | Downloads: 12 | Views: 424
Author(s)
Junhua Deng 1, Zengbo Huang 1, Sanju Yang 1, Yunguang Liu 1
Affiliation(s)
1 Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
Corresponding Author
Yunguang LiuABSTRACT
TRPC6, fully known as transient receptor point cation channel 6, has attracted increasing attention as a member of the TRPC family[1] The results of many studies prove that it is involved in several physiological functions in the kidney [2,3], in particular, it is expressed as an important ion channel in kidney podocytes and is important for the regulation of calcium homeostasis in podocyte[4,5]. In this review, we hope to analyze the research hotspots and future research directions in the field of TRPC6 and podocytes by using some bibliometric analysis software.
KEYWORDS
TRPC6, podocye, bibliometrics, research hotspots, VOSviewer, citespaceCITE THIS PAPER
Junhua Deng, Zengbo Huang, Sanju Yang, Yunguang Liu, 2012-2022 TRPC6 channel and podocyte research trends: A bibliometric study. MEDS Basic Medicine (2024) Vol. 2: 72-85. DOI: http://dx.doi.org/10.23977/medbm.2024.020110.
REFERENCES
[1] U Saqib, Munjuluri S, Sarkar S, et al. Transient Receptor Potential Canonical 6 (TRPC6) Channel in the Pathogenesis of Diseases: A Jack of Many Trades[J]. Inflammation, 2023, 46(4): 1144-1160.
[2] Di H, Wang Q, Liang D, et al. Genetic features and kidney morphological changes in women with X-linked Alport syndrome[J]. J Med Genet, 2023, 60(12): 1169-1176.
[3] K Gusev, Shalygin A, Kolesnikov D, et al. Reorganization and Suppression of Store-Operated Calcium Entry in Podocytes of Type 2 Diabetic Rats[J]. Int J Mol Sci, 2023, 24(8).
[4] T Szabo, Ambrus L, Zakany N, et al. Regulation of TRPC6 ion channels in podocytes - Implications for focal segmental glomerulosclerosis and acquired forms of proteinuric diseases[J]. Acta Physiol Hung, 2015, 102(3): 241-251.
[5] KAT Verheijden, Sonneveld R, Bakker-van Bebber-M, et al. The Calcium-Dependent Protease Calpain-1 Links TRPC6 Activity to Podocyte Injury[J]. J Am Soc Nephrol, 2018, 29(8): 2099-2109.
[6] J-K Bujak, Kosmala D, Szopa I-M, et al. Inflammation, Cancer and Immunity-Implication of TRPV1 Channel[J]. Front Oncol, 2019, 91087.
[7] M-P Winn, Conlon P-J, Lynn K-L, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis[J]. Science, 2005, 308(5729): 1801-1804.
[8] Q Tang, Guo W, Zheng L, et al. Structure of the receptor-activated human TRPC6 and TRPC3 ion channels[J]. Cell Res, 2018, 28(7): 746-755.
[9] C-M Azumaya, Sierra-Valdez F, Cordero-Morales J-F, et al. Cryo-EM structure of the cytoplasmic domain of murine transient receptor potential cation channel subfamily C member 6 (TRPC6)[J]. J Biol Chem, 2018, 293(26): 10381-10391.
[10] V Bruno, Muhlig A-K, Oh J, et al. New insights into the immune functions of podocytes: the role of complement[J]. Mol Cell Pediatr, 2023, 10(1): 3.
[11] J-B Kopp, Anders H-J, Susztak K, et al. Podocytopathies[J]. Nat Rev Dis Primers, 2020, 6(1): 68.
[12] O Martinez-Arroyo, Flores-Chova A, Sanchez-Garcia B, et al. Rab3A/Rab27A System Silencing Ameliorates High Glucose-Induced Injury in Podocytes[J]. Biology (Basel), 2023, 12(5).
[13] L Erichsen, Thimm C, Wruck W, et al. Secreted Cytokines within the Urine of AKI Patients Modulate TP53 and SIRT1 Levels in a Human Podocyte Cell Model[J]. Int J Mol Sci, 2023, 24(9).
[14] B Chen, He Q. miR-1187 induces podocyte injury and diabetic nephropathy through autophagy[J]. Diab Vasc Dis Res, 2023, 20(3): 1497014827.
[15] A-D Thomas, Trainor R, Sheingold Z, et al. A Case of COVID-19-Associated Focal Segmental Glomerulosclerosis [J]. Cureus, 2023, 15(4): e37547.
[16] F Xiao, Hou S, Kui K, et al. Case report of extranodal natural killer/T-cell lymphoma that induced secondary hemophagocytic syndrome-related histiocytic glomerulopathy[J]. J Int Med Res, 2023, 51(5): 655747416.
[17] J Blaine, Dylewski J. Regulation of the Actin Cytoskeleton in Podocytes[J]. Cells, 2020, 9(7).
[18] C-J May, Chesor M, Hunter S-E, et al. Podocyte protease activated receptor 1 stimulation in mice produces focal segmental glomerulosclerosis mirroring human disease signaling events[J]. Kidney Int, 2023, 104(2): 265-278.
[19] H-T Huang, Lin X, Guo P-W, et al. [Expression and role of the TRPC family in TGF-beta1-induced calcium influx in podocytes][J]. Sheng Li Xue Bao, 2022, 74(6): 1005-1013.
[20] S-E Dryer, Kim E-Y. The Effects of TRPC6 Knockout in Animal Models of Kidney Disease[J]. Biomolecules, 2022, 12(11).
[21] I-D Cooper. Bibliometrics basics[J]. J Med Libr Assoc, 2015, 103(4): 217-218.
[22] S Liu, Sun Y-P, Gao X-L, et al. Knowledge domain and emerging trends in Alzheimer's disease: a scientometric review based on CiteSpace analysis[J]. Neural Regen Res, 2019, 14(9): 1643-1650.
[23] D Xu, Wang Y-L, Wang K-T, et al. A Scientometrics Analysis and Visualization of Depressive Disorder[J]. Curr Neuropharmacol, 2021, 19(6): 766-786.
[24] P Lai, Xu S, Xue J-H, et al. Current hotspot and study trend of innate immunity in COVID-19: a bibliometric analysis from 2020 to 2022[J]. Front Immunol, 2023, 141135334.
[25] S Cortese, Sabe M, Angriman M, et al. The Italian contribution to pediatric sleep medicine: A scientometric analysis [J]. Sleep Med, 2023, 107164-170.
[26] Y Chen, Chen Y, Tan S, et al. Visual analysis of global research on immunotherapy for gastric cancer: A literature mining from 2012 to 2022[J]. Hum Vaccin Immunother, 2023, 19(1): 2186684.
[27] L Zhou, Liu Y. Wnt/beta-catenin signalling and podocyte dysfunction in proteinuric kidney disease[J]. Nat Rev Nephrol, 2015, 11(9): 535-545.
[28] S Xu, Nam S-M, Kim J-H, et al. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress[J]. Cell Death Dis, 2015, 6(11): e1976.
[29] E-Y Kim, Anderson M, Dryer S-E. Insulin increases surface expression of TRPC6 channels in podocytes: role of NADPH oxidases and reactive oxygen species[J]. Am J Physiol Renal Physiol, 2012, 302(3): F298-F307.
[30] H Soni, Adebiyi A. TRPC6 channel activation promotes neonatal glomerular mesangial cell apoptosis via calcineurin/NFAT and FasL/Fas signaling pathways[J]. Sci Rep, 2016, 629041.
[31] G Yang, Ma H, Wu Y, et al. Activation of TRPC6 channels contributes to (+)-conocarpan-induced apoptotic cell death in HK-2 cells[J]. Food Chem Toxicol, 2019, 129281-290.
[32] Y Feng, Li M, Wang Y, et al. Activation of TRPC6 by AngⅡ Induces Podocyte Injury and Participates in Proteinuria of Nephrotic Syndrome[J]. Front Pharmacol, 2022, 13915153.
[33] A-K Mottl, Lu M, Fine C-A, et al. A novel TRPC6 mutation in a family with podocytopathy and clinical variability[J]. BMC Nephrol, 2013, 14104.
[34] H Yu, Kistler A, Faridi M-H, et al. Synaptopodin Limits TRPC6 Podocyte Surface Expression and Attenuates Proteinuria[J]. J Am Soc Nephrol, 2016, 27(11): 3308-3319.
[35] E-Y Kim, Yazdizadeh Shotorbani-P, Dryer S-E. Trpc6 inactivation confers protection in a model of severe nephrosis in rats[J]. J Mol Med (Berl), 2018, 96(7): 631-644.
[36] E-Y Kim, Hassanzadeh Khayyat-N, Dryer S-E. Mechanisms underlying modulation of podocyte TRPC6 channels by suPAR: Role of NADPH oxidases and Src family tyrosine kinases[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(10): 3527-3536.
[37] E-Y Kim, Dryer S-E. Effects of TRPC6 Inactivation on Glomerulosclerosis and Renal Fibrosis in Aging Rats[J]. Cells, 2021, 10(4).
[38] S Yu, Yu L. Dexamethasone Resisted Podocyte Injury via Stabilizing TRPC6 Expression and Distribution[J]. Evid Based Complement Alternat Med, 2012, 2012652059.
[39] M Szrejder, Rachubik P, Rogacka D, et al. Metformin reduces TRPC6 expression through AMPK activation and modulates cytoskeleton dynamics in podocytes under diabetic conditions[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(3): 165610.
[40] R Sonneveld, van der Vlag J, Baltissen M-P, et al. Glucose specifically regulates TRPC6 expression in the podocyte in an AngII-dependent manner[J]. Am J Pathol, 2014, 184(6): 1715-1726.
[41] R Ma, Xu Y, Zhou H, et al. Participation of the AngII/TRPC6/NFAT axis in the pathogenesis of podocyte injury in rats with type 2 diabetes[J]. Mol Med Rep, 2019, 19(3): 2421-2430.
[42] X Yao, Guo H, Sun M, et al. Klotho Ameliorates Podocyte Injury through Targeting TRPC6 Channel in Diabetic Nephropathy[J]. J Diabetes Res, 2022, 20221329380.
[43] R Sonneveld, Ferre S, Hoenderop J-G, et al. Vitamin D down-regulates TRPC6 expression in podocyte injury and proteinuric glomerular disease[J]. Am J Pathol, 2013, 182(4): 1196-1204.
[44] R Sonneveld, Hoenderop J-G, Isidori A-M, et al. Sildenafil Prevents Podocyte Injury via PPAR-gamma-Mediated TRPC6 Inhibition[J]. J Am Soc Nephrol, 2017, 28(5): 1491-1505.
[45] Hart-D T, Li J, van der Vlag J, et al. Repurposing Riociguat to Target a Novel Paracrine Nitric Oxide-TRPC6 Pathway to Prevent Podocyte Injury[J]. Int J Mol Sci, 2021, 22(22).
Downloads: | 815 |
---|---|
Visits: | 29710 |
Sponsors, Associates, and Links
-
MEDS Clinical Medicine
-
Journal of Neurobiology and Genetics
-
Medical Imaging and Nuclear Medicine
-
Bacterial Genetics and Ecology
-
Transactions on Cancer
-
Journal of Biophysics and Ecology
-
Journal of Animal Science and Veterinary
-
Academic Journal of Biochemistry and Molecular Biology
-
Transactions on Cell and Developmental Biology
-
Rehabilitation Engineering & Assistive Technology
-
Orthopaedics and Sports Medicine
-
Hematology and Stem Cell
-
Journal of Intelligent Informatics and Biomedical Engineering
-
MEDS Stomatology
-
MEDS Public Health and Preventive Medicine
-
MEDS Chinese Medicine
-
Journal of Enzyme Engineering
-
Advances in Industrial Pharmacy and Pharmaceutical Sciences
-
Bacteriology and Microbiology
-
Advances in Physiology and Pathophysiology
-
Journal of Vision and Ophthalmology
-
Frontiers of Obstetrics and Gynecology
-
Digestive Disease and Diabetes
-
Advances in Immunology and Vaccines
-
Nanomedicine and Drug Delivery
-
Cardiology and Vascular System
-
Pediatrics and Child Health
-
Journal of Reproductive Medicine and Contraception
-
Journal of Respiratory and Lung Disease
-
Journal of Bioinformatics and Biomedicine