Education, Science, Technology, Innovation and Life
Open Access
Sign In

A Stereo Vision Perception and Control Method for an Intelligent Shift Device

Download as PDF

DOI: 10.23977/jaip.2024.070406 | Downloads: 7 | Views: 474

Author(s)

Yanhua Liu 1, Qiuting Yang 2, Zhefu Zheng 3, Luxin Tang 4, Jian Huang 4

Affiliation(s)

1 School of Art and Design, Guangzhou Institute of Science and Technology, Guangzhou, China
2 City College of Huizhou, Huizhou, China
3 School of Computer Science and Engineering, Guangzhou Institute of Science and Technology, Guangzhou, China
4 School of Intelligent Manufacturing and Electrical Engineering, Guangzhou Institute of Science and Technology, Guangzhou, China

Corresponding Author

Yanhua Liu

ABSTRACT

This research has developed an intelligent patient transfer device, designed to enhance the safety and efficiency of patient transfers within healthcare settings. The device integrates advanced multi-sensor fusion localization technology, including LiDAR, Inertial Measurement Unit (IMU), and ultrasonic sensors, along with the Kalman filtering algorithm to improve the precision of motion state estimation, tackling the complexities of state estimation in nonlinear systems. Experimental findings demonstrate that the device has achieved a positioning accuracy of ±1.0 centimeter, a 100% success rate in obstacle avoidance, and motion stability (in terms of acceleration changes) below 0.2 meters/second². These results underscore the exceptional performance of the device in complex medical environments, effectively fulfilling the requirements for safe and efficient patient transfers.

KEYWORDS

Medical Transfer Machine, Multi-Sensor Fusion, Ultrasonic Sensor, LiDAR, Localization Technology

CITE THIS PAPER

Yanhua Liu, Qiuting Yang, Zhefu Zheng, Luxin Tang, Jian Huang, A Stereo Vision Perception and Control Method for an Intelligent Shift Device. Journal of Artificial Intelligence Practice (2024) Vol. 7: 48-59. DOI: http://dx.doi.org/10.23977/jaip.2024.070406.

REFERENCES

[1] Zhu, K., & Zhang, T. (2021). Deep reinforcement learning based mobile robot navigation: A comprehensive review. Tsinghua Science and Technology, 26(5), 674-691.
[2] Wang, T., Chen, B., Zhang, Z., Li, H., & Zhang, M. (2022). Advances in machine vision for agricultural robot navigation: A systematic review. Computers and Electronics in Agriculture, 198, 107085.
[3] Crespo, J., Castillo, J. C., Mozos, O. M., & Barber, R. (2020). Semantic information for robot navigation: A comprehensive survey. Applied Sciences, 10(2), 497.
[4] Möller, R., Furnari, A., Battiato, S., Härmä, A., & Farinella, G. M. (2021). Human-aware robot navigation: A state-of-the-art survey. Robotics and Autonomous Systems, 145, 103837.
[5] Mavrogiannis, C., Baldini, F., Wang, A., Zhao, D., Trautman, P., Steinfeld, A., & Oh, J. (2023). Core challenges of social robot navigation: A systematic review. ACM Transactions on Human-Robot Interaction, 12(3), 1-39.
[6] Tettey, F., Parupelli, S. K., & Desai, S. (2024). A critical review of biomedical devices: Classification, regulatory guidelines, human factors, software as a medical device, and cybersecurity. Biomedical Materials & Devices, 2(1), 316-341.
[7] Sonko, S., Monebi, A. M., Etukudoh, E. A., Osasona, F., Atadoga, A., & Daudu, C. D. (2024). The role of embedded systems in medical devices in the USA: A comprehensive review. International Medical Science Research Journal, 4(2), 158-169.
[8] Tariq, M. U. (2024). Advanced wearable medical devices and their role in transformative remote health monitoring. In Transformative Approaches to Patient Literacy and Healthcare Innovation (pp. 308-326). IGI Global.
[9] Gharajeh, M. S., & Jond, H. B. (2020). Hybrid global positioning system-adaptive neuro-fuzzy inference system based autonomous mobile robot navigation. Robotics and Autonomous Systems, 134, 103669.
[10] Javaid, M., Haleem, A., Rab, S., Singh, R. P., & Suman, R. (2021). Sensors for daily life: A comprehensive review. Sensors International, 2, 100121.
[11] Haleem, A., Javaid, M., Singh, R. P., Suman, R., & Rab, S. (2021). Biosensors applications in the medical field: A brief review. Sensors International, 2, 100100.
[12] Mbunge, E., Muchemwa, B., & Batani, J. (2021). Sensors and healthcare 5.0: Transformative shift in virtual care through emerging digital health technologies. Global Health Journal, 5(4), 169-177.
[13] Senbekov, M., Saliev, T., Bukeyeva, Z., Almabayeva, A., Zhanaliyeva, M., Aitenova, N., Toishibekov, Y., & Fakhradiyev, I. (2020). The recent progress and applications of digital technologies in healthcare: A comprehensive review. International Journal of Telemedicine and Applications, 2020(1), 8830200.
[14] Kelly, J. T., Campbell, K. L., Gong, E., & Scuffham, P. (2020). The Internet of Things: Impact and implications for health care delivery. Journal of Medical Internet Research, 22(11), e20135.
[15] Ahad, A., Tahir, M., Sheikh, M. A., Ahmed, K. I., Mughees, A., & Numani, A. (2020). Technologies trend towards 5G network for smart health-care using IoT: A comprehensive review. Sensors, 20(14), 4047.
[16] Esposito, M., Crimaldi, M., Cirillo, V., Sarghini, F., & Maggio, A. (2021). Drone and sensor technology for sustainable weed management: A comprehensive review. Chemical and Biological Technologies in Agriculture, 8, 1-11.
[17] Muehlematter, U.J., Daniore, P., & Vokinger, K.N. (2021). Comparative analysis of artificial intelligence and machine learning-based medical device approvals in the USA and Europe (2015–20). The Lancet Digital Health, 3(3), e195-e203.
[18] Van der Schaar, M., Alaa, A.M., Floto, A., Gimson, A., Scholtes, S., Wood, A., McKinney, E., Jarrett, D., Lio, P., & Ercole, A. (2021). AI and machine learning in healthcare systems’ response to COVID-19. Machine Learning, 110, 1-14.
[19] Barragán-Montero, A., Javaid, U., Valdés, G., Nguyen, D., Desbordes, P., Macq, B., Willems, S., Vandewinckele, L., Holmström, M., Löfman, F., & Michiels, S. (2021). AI and machine learning for medical imaging: A technology review. Physica Medica, 83, 242-256.
[20] Javaid, M., Haleem, A., Singh, R.P., Suman, R., & Rab, S. (2022). The role of machine learning in healthcare: Features, pillars, and applications. International Journal of Intelligent Networks, 3, 58-73.
[21] Van der Velden, B.H., Kuijf, H.J., Gilhuijs, K.G., & Viergever, M.A. (2022). Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Medical Image Analysis, 79, 102470.
[22] Aung, Y.Y., Wong, D.C., & Ting, D.S. (2021). The potential of artificial intelligence in healthcare: Opportunities and challenges. British Medical Bulletin, 139(1), 4-15.
[23] Kilic, A. (2020). Artificial intelligence and machine learning in cardiovascular healthcare. The Annals of Thoracic Surgery, 109(5), 1323-1329.
[24] Nessa, A., Adhikari, B., Hussain, F., & Fernando, X.N. (2020). Machine learning for indoor positioning: A survey. IEEE Access, 8, 214945-214965.
[25] Feng, D., Wang, C., He, C., Zhuang, Y., & Xia, X.G. (2020). Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning and navigation. IEEE Internet of Things Journal, 7(4), 3133-3146.
[26] Kunhoth, J., Karkar, A., Al-Maadeed, S., & Al-Ali, A. (2020). Indoor positioning and wayfinding systems: A survey. Human-Centric Computing and Information Sciences, 10, 1-41.
[27] Shareef, M.A., Kumar, V., Dwivedi, Y.K., Kumar, U., Akram, M.S. and Raman, R., 2021. A new health care system enabled by machine intelligence: Elderly people's trust or losing self-control. Technological Forecasting and Social Change, 162, p.120334.

Downloads: 13811
Visits: 413556

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.