A novel voltage reference circuit without amplifier
DOI: 10.23977/jeeem.2020.030101 | Downloads: 67 | Views: 4896
Author(s)
Zhen Zhang 1
Affiliation(s)
1 Department of Electronic Engineering, Jinan University, Guangzhou 510632, P. R. China
Corresponding Author
Zhen ZhangABSTRACT
A novel voltage reference circuit without amplifier is proposed in this paper. In this circuit, the difference between the two NMOS transistors operating in the sub-threshold region is applied to the resistor, thereby generating current with positive temperature coefficient, which is mirrored to the output circuit to generate voltage with positive temperature coefficient. The gate-source voltage of the NMOS operating in the sub-threshold region is added to the voltage with positive temperature coefficient, and finally reference voltage is generated that does not change with temperature, voltage and process. Compared with the traditional voltage reference circuit, the circuit is simplified by using negative feedback structure instead of amplifiers. This design is simulated based on 180 nm process and Cadence simulator. When the power supply voltage (VDD) is between 1.3 V and 2.5 V and the temperature (T) is between -80 °C and 90 °C, in the most ideal case, the temperature coefficient (TC) is 8.6 ppm/°C, the power supply rejection ratio (PSRR) is -32 dB both at 100 Hz and 10 kHz. In the typical VDD of 1.8 V, the reference voltage (VREF) is 684 mV, which can be applied to on-chip digital isolators, transceivers and temperature sensors, etc.
KEYWORDS
voltage reference; sub-threshold; negative feedback; temperature coefficientCITE THIS PAPER
Zhen Zhang. A novel voltage reference circuit without amplifier. Journal of Electrotechnology, Electrical Engineering and Management (2020) Vol. 3: 1-7. DOI: http://dx.doi.org/10.23977/jeeem.2020.030101.
REFERENCES
[1] Ou X, Wu N J. Analog-digital and digital-analog converters using single-electron and MOS transistors [J]. IEEE transactions on nanotechnology, 2005, 4(6): 722-729.
[2] Little S, Walter D, Seegmiller N, et al. Verification of analog and mixed-signal circuits using timed hybrid petri nets[C]//International Symposium on Automated Technology for Verification and Analysis. Springer, Berlin, Heidelberg, 2004: 426-440.
[3] Kuijk K E. A precision reference voltage source[J]. IEEE Journal of Solid-State Circuits, 1973, 8(3): 222-226.
[4] Tham K M, Nagaraj K. A low supply voltage high PSRR voltage reference in CMOS process[J]. IEEE Journal of Solid-State Circuits, 1995, 30(5): 586-590.
[5] Malekkhosravi B, Woodard D J. Method and architecture for integrated circuit design and manufacture: U.S. Patent 7,032,191[P]. 2006-4-18.
[6] Leung C Y, Leung K N, Mok P K T. Design of a 1.5-V high-order curvature-compensated CMOS bandgap reference[C]//2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No. 04CH37512). IEEE, 2004, 1: I-48.
[7] Ming X, Ma Y, Zhou Z, et al. A high-precision compensated CMOS bandgap voltage reference without resistors[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010, 57(10): 767-771.
[8] Prilenski L, Mukund P R. A sub 1-volt subthreshold bandgap reference at the 14 nm FinFET node[J]. Microelectronics Journal, 2018, 79: 17-23.
[9] Osaki, Y. , Hirose, T. , Kuroki, N. , & Numa, M. . (2013). 1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs. IEEE Journal of Solid-State Circuits, 48(6), 1530-1538.
Downloads: | 3015 |
---|---|
Visits: | 131829 |
Sponsors, Associates, and Links
-
Power Systems Computation
-
Internet of Things (IoT) and Engineering Applications
-
Computing, Performance and Communication Systems
-
Journal of Artificial Intelligence Practice
-
Advances in Computer, Signals and Systems
-
Journal of Network Computing and Applications
-
Journal of Web Systems and Applications
-
Journal of Wireless Sensors and Sensor Networks
-
Journal of Image Processing Theory and Applications
-
Mobile Computing and Networking
-
Vehicle Power and Propulsion
-
Frontiers in Computer Vision and Pattern Recognition
-
Knowledge Discovery and Data Mining Letters
-
Big Data Analysis and Cloud Computing
-
Electrical Insulation and Dielectrics
-
Crypto and Information Security
-
Journal of Neural Information Processing
-
Collaborative and Social Computing
-
International Journal of Network and Communication Technology
-
File and Storage Technologies
-
Frontiers in Genetic and Evolutionary Computation
-
Optical Network Design and Modeling
-
Journal of Virtual Reality and Artificial Intelligence
-
Natural Language Processing and Speech Recognition
-
Journal of High-Voltage
-
Programming Languages and Operating Systems
-
Visual Communications and Image Processing
-
Journal of Systems Analysis and Integration
-
Knowledge Representation and Automated Reasoning
-
Review of Information Display Techniques
-
Data and Knowledge Engineering
-
Journal of Database Systems
-
Journal of Cluster and Grid Computing
-
Cloud and Service-Oriented Computing
-
Journal of Networking, Architecture and Storage
-
Journal of Software Engineering and Metrics
-
Visualization Techniques
-
Journal of Parallel and Distributed Processing
-
Journal of Modeling, Analysis and Simulation
-
Journal of Privacy, Trust and Security
-
Journal of Cognitive Informatics and Cognitive Computing
-
Lecture Notes on Wireless Networks and Communications
-
International Journal of Computer and Communications Security
-
Journal of Multimedia Techniques
-
Automation and Machine Learning
-
Computational Linguistics Letters
-
Journal of Computer Architecture and Design
-
Journal of Ubiquitous and Future Networks